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Super Fast Event Recognition in Internet Videos
Yu-Gang Jiang, Qi Dai, Tao Mei, Yong Rui, and Shih-Fu Chang

Abstract—Techniques for recognizing high-level events in
consumer videos on the Internet have many applications. Systems
that produced state-of-the-art recognition performance usually
contain modules requiring extensive computation, such as the
extraction of the temporal motion trajectories, which cannot
be deployed on large-scale datasets. In this paper, we provide
a comprehensive study on efficient methods in this area and
identify technical options for super fast event recognition in
Internet videos. We start from analyzing a multimodal baseline
that has produced good performance on popular benchmarks,
by systematically evaluating each component in terms of both
computational cost and contribution to recognition accuracy.
After that, we identify alternative features, classifiers, and fusion
strategies that can all be efficiently computed. In addition, we also
provide a study on the following interesting question: for event
recognition in Internet videos, what is the minimum number of
visual and audio frames needed to obtain a comparable accuracy
to that of using all the frames? Results on two rigorously designed
datasets indicate that similar results can be maintained by using
only a small portion of the visual frames. We also find that,
different from the visual frames, the soundtracks contain little
redundant information and thus sampling is always harmful.
Integrating all the findings, our suggested recognition system
is 2,350-fold faster than a baseline approach with even higher
recognition accuracies. It recognizes 20 classes on a 120-second
video sequence in just 1.78 seconds, using a regular desktop
computer.
Index Terms—Consumer videos, efficiency, event recognition,

Internet videos, real time.

I. INTRODUCTION

T HE past decade has witnessed the explosion of user-gen-
erated videos on the Internet. As a result, there is a strong

need of techniques for automatically recognizing high-level
complex events in such videos, which are important in ap-
plications such as video search, personal video collection
management, and smart advertising. See a few examples in
Fig. 1. State-of-the-art event recognition systems often adopted
a large set of features and classifiers in order to achieve a good
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Fig. 1. This paper presents a very efficient system for recognizing events in
Internet consumer videos, which only requires a few seconds to process a min-
utes-long video.

accuracy, without seriously considering recognition efficiency.
For instance, one of the popularly used features is based on
the dense trajectories [1], which requires expensive analysis of
every frame in a video sequence. While promising results have
been achieved on several benchmark datasets [1], [2], these
systems are computationally too slow to deal with large-scale
data that is often seen in applications of the big data era.
In this paper, we conduct a comprehensive study on many

technical options with the goal of improving event recognition
efficiency, while still obtaining a good accuracy. We start from
evaluating the performance of amultimodal baseline, developed
using several popular features that are the core components of
many top-performing systems in the NIST TRECVID bench-
mark [3]. For each component of this baseline, we assess the
computational cost and its contribution to the recognition ac-
curacy. We then evaluate a large set of alternative methods or
implementations to identify the best techniques for speed im-
provement. Valuable insights on the choices of features, feature
quantization methods, classifiers and feature fusion schemes are
attained from this comprehensive analysis. This finally leads to
a super fast system for event recognition, which cleverly uti-
lizes several features and classifiers that can be computed very
efficiently.
In addition to evaluating popular features and classifiers, an-

other question studied in this paper is: for event recognition
in Internet videos, what is the minimum number of visual and
audio frames needed to obtain a comparable accuracy to that of
using all the frames? Popular systems normally extract features
from the entire videos or on densely sampled frame sets without
deeper investigation [1], [4]–[6]. However, humans can recog-
nize many video semantics in a very short period of time, or

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



JIANG et al.: SUPER FAST EVENT RECOGNITION IN INTERNET VIDEOS 1175

sometimes even based on a single static visual frame. Our pre-
vious experience of event annotation using the Amazon MTurk
indicates that, on average, human annotators only used 20 sec-
onds to label an 80-second video (including operation time of
marking all the found classes) [7]. These intuitions motivate us
to evaluate the minimum number of frames required for event
recognition by the automatic systems. In particular, we not only
evaluate the number of visual frames needed for recognition,
but also the number of audio frames (segments), as both modal-
ities are important for video event recognition. This will provide
unique insights to guide the design of an efficient system.
It is worth noting that this paper focuses on event recogni-

tion in user-generated consumer videos, a significant and prob-
ably the most dynamic portion of the Internet videos. Compared
with other kinds of videos likemovies or news, consumer videos
have less or even no textual descriptions, and thus it is impor-
tant to conduct content-based recognition to facilitate effective
organization and retrieval. One property of the consumer videos
is that the duration is normally very short and the content story
is generally consistent. This implies that a very short segment
may be only needed for event recognition. For other types of
videos, the content may vary significantly over time and thus
it is difficult to use just a subset of frames for recognition. In
fact, for long videos like movies, it is not be suitable to assign
video-level event labels, and segment/shot-level labels are more
reasonable. Analyzing these professionally produced videos is
beyond the focus of this work.
The rest of this paper is organized as follows. Section II dis-

cusses related works. Section III introduces various options for
speeded up event recognition, including features, quantization
methods, classifiers, fusion schemes, and frame sampling. We
discuss a comprehensive set of experimental results on two
datasets in Section IV. Finally, Section V summarizes the
insights attained from this study and Section VI concludes this
paper.

II. RELATED WORK

The problem of recognizing complex events in unconstrained
Internet videos is receiving significant research attentions. Ex-
isting methods on video content analysis such as human action
recognition and video concept detection mostly only employed
visual features [8], [4], [1], [9], while recent studies have proved
that most video content recognition tasks can benefit from audi-
tory clues and multimodal features should be jointly used [10],
[5], [6], [2]. Typically an event recognition system first com-
putes a large set of multimodal features, and then employs ma-
chine learning methods for classification, where SVM is the
most popular option due to its robustness and efficiency [5], [6],
[2], [11]. In the following wemainly discuss the works that have
particularly considered the speed issue in the design of a recog-
nition system.
Feature extraction is probably the slowest part of a recog-

nition system. Popular features like the sparse keypoint-based
SIFT [12] or the dense trajectories [1] are less suitable because
they are too slow. In particular, the dense trajectory feature
is extremely slow as it needs to process every video frame.
Several studies have been devoted to speed up the feature ex-
traction process. In [13], Bay et al. proposed a fast descriptor

called speeded up robust feature (SURF), which is similar to
the SIFT but is more efficient. In [14], Knopp et al. further ex-
tended SURF to the spatio-temporal space to locate descriptive
local volumes for video analysis. It has also been frequently re-
ported that dense sampling works similar to even better than the
sparse local detectors [15], [1]. Different from the sparse de-
tectors that find local maximums/minimums to locate invariant
local patches, dense sampling computes descriptors densely on
uniformly partitioned image/video patches. It is more efficient
since the time-consuming detector phase is omitted, but it also
requires to compute more descriptors as more patches are sam-
pled. In [16], the authors showed that dense SIFT/SURF de-
scriptors can be very efficiently computed using an engineering
trick to reduce the computations on overlapped areas of nearby
patches. Similar idea was also extended in [17] to implement
fast versions of HOG and HOF features for human action recog-
nition. In addition, recently the Convolutional Neural Networks
(CNN) based features have been frequently used in video cate-
gorization [18], [19], [20], which can be quickly computed par-
ticularly on the GPU. In contrast to most visual features, audio
features can be more efficiently extracted as the soundtrack is
much more compact than the visual frames.
Many effective descriptors are extracted locally, and thus the

number of the local descriptors varies across videos. A quanti-
zation step is needed to convert these sets of descriptors to fixed
dimensional features, which are required by most learning al-
gorithms. The most popular quantization method is called bag-
of-words, which maps the descriptors to a set of pre-generated
codewords, and the final representation is a frequency-based
histogram. The mapping or quantization process is computa-
tionally slow if we compute the similarities between the local
descriptors and the codewords in a straightforward way. In [21],
Nister et al. used a tree-based structure to organize the code-
words, so that the quantization can be done in a top-down map-
ping procedure to reduce the amount of similarity calculations.
In [22],Moosmann et al. employed random forest, a special kind
of trees, for fast computation of the bag-of-words features. This
method has been used in [16] for fast image-based concept de-
tection. In [23], the authors extended a method called semantic
texton forests [24] from images to videos for fast human ac-
tion recognition. More recently, the authors of [25] proposed a
method for fast feature quantization, based on an assumption
that local neighboring keypoints are visually and semantically
similar.
Besides the features, classifier is another expensive compo-

nent particularly when there are many classes to be recognized.
Support Vector Machine (SVM) is the most popular classifier
for video analysis, which has been widely used in many state-
of-the-art systems. The nonlinear kernels such as the Histogram
Intersection or the are computationally expensive but are
needed to achieve good recognition accuracy. In [26], Maji et
al. used an approximation based method to reduce the number
of support vectors to be compared by a test sample, which can
largely reduce testing time and has been used in [16] for fast
visual concept detection. In addition, the fast linear kernel has
been observed to be suitable for high-dimensional features such
as the Fisher vectors [27]. However, computing the Fisher vec-
tors is slower than computing the bag-of-words representation
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with efficient nearest neighbor search methods, as the former
requires to compute the first and second order statistics instead
of simple counting in the bag-of-words. Instead of the SVM,
several recent works adopted neural networks for classification
[18]–[20].
There are also a few works focusing on the selection or sam-

pling of frames for recognition. In [28], Habibian et al. proposed
to identify and remove stop frames in video event recognition,
such as blank and blurry frames, and found that removing those
frames is helpful. This work did not study the minimum number
of required frames for recognition. In [29], Subhabrata et al.
conducted an interesting human study to investigate the min-
imal needed evidence for event recognition. They found that a
single microshot of just 1.5 seconds is sufficient for humans to
predict the event class of many videos. Earlier, the authors of
[30] evaluated the number of frames needed for action recog-
nition in videos. The conclusion was that a single frame is ad-
equate for many action classes. One reason of this observation
is that the videos used in their experiments were captured in
controlled environment and the samples are easy to be identi-
fied. Therefore we believe this may not generalize to the do-
main of complex consumer videos. Furthermore, in this work
we not only study the number of needed visual frames, but also
the audio counterpart.
This work is extended based on a conference paper [31]. The

extensions include: 1) discussions and experiments on the accu-
racy and speed of the popular dense trajectory features and CNN
features; 2) using random forest for feature quantization, which
further improves the speed; 3) new experiments to evaluate a
Kernel Regression classifier; and 4) additional experiments on
a new dataset, which ensure that the observations and conclu-
sions are more generalizable. In addition to our previous work
[31], Lan et al. [32] recently studied the speed efficiency of sev-
eral event recognition techniques, Ma et al. [33] discussed sev-
eral options to improve speed, and Uijlings et al. [17] presented
fast implementations of HOG/HOF features for human action
recognition. However, Ma et al. [33] did not provide thorough
experimental validations. Lan et al. [32] and Uijlings et al. [17]
only focused on feature options without evaluating other factors
such as classifiers and frame sampling strategies, which are also
critical in the design of a fast recognition system.

III. SUPER FAST EVENT RECOGNITION

In this section, we first introduce a multimodal baseline
recognition system, which is used as a starting point for identi-
fying alternative components to optimize the recognition speed.

A. A Multimodal Baseline System

For the baseline system, we consider critical components of
several systems that have produced state-of-the-art results [5],
[34], [2]. Features are the key factor in recognition performance
and thus some of the strongest and the most popular features
are adopted. For classification and fusion, we use the most
popular option of SVM classifier and late fusion. Some recent
approaches adopted sophisticated multimodal fusion strategies
[35], [6], which may lead to slightly better performance but is
computationally slow.

Fig. 2. Framework of the baseline event recognition system. We start from
analyzing the components of this system and then identify alternative methods
for speed improvements.

Fig. 2 shows the framework of the baseline approach. The ex-
tracted features cover all the major clues including static visual
descriptor, motion-based visual descriptor, and audio descriptor.
The descriptors are converted to the bag-of-words representa-
tion for classification with the SVM. Results of separate SVM
classifiers trained with different features are combined by late
fusion. More details are given in the following.
1) Static Visual Descriptor: We adopt SIFT as the static vi-

sual feature, which is the most popular feature in many image/
video related applications. For local patch detection, we adopt
the Difference of Gaussian (DoG) [12] and the Hessian Affine
[36], which are complementary because they focus on different
aspects of invariance. As computing features on every video
frame is slow, we only extract static visual feature from a set
of sampled frames (one frame every two seconds). This sam-
pling rate has been frequently used in several systems. We will
evaluate this factor in detail in the experiments.
2) Motion Descriptor: Different from the static SIFT fea-

tures, motion features capture the moving characteristics in
videos, which are important for events with strong motions.
The first motion feature considered here is the spatial-temporal
interest point (STIP) [37], which detects invariant spatial-tem-
poral volumes, just like the Hessian Affine for detecting the
static image patches. HOG and HOF descriptors are computed
based on pixel values in each volume.
We also consider the dense trajectory descriptors [1], which

have recently demonstrated top performance on various bench-
mark datasets. First, densely sampled local frame patches are
tracked over time. Four kinds of descriptors are then computed
for each trajectory, including a 30-d trajectory shape descriptor,
a 96-d HOG descriptor, a 108-d HOF descriptor, and a 108-d
Motion Boundary Histogram (MBH) descriptor. All these mo-
tion-based descriptors are expensive to compute as they need to
process all the frames. Sampling the frames will always hurt the
performance as the motion patterns will be destroyed.
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3) Audio Descriptor: Neuroscientists have found that mul-
tiple senses can cooperate to enhance perception performance
[38]. It has also been frequently reported that audio is a helpful
clue for video event recognition. We therefore extract the well-
known MFCC descriptors, which are computed over densely
sampled audio segments/frames (32 ms of duration). Nearby
segments have 50% (16 ms) overlap to minimize the informa-
tion loss. As the soundtrack is much more compact than the vi-
sual frames, it is efficient to compute these descriptors although
the audio frames are densely sampled.
4) Descriptor Quantization: All the aforementioned de-

scriptors vary in set size across videos, requiring a quantization
method to convert them into fixed-dimensional video rep-
resentations. We adopt the well-known bag-of-words. Two
codebooks, each with 500 codewords, are adopted for the SIFT
descriptors. One for the DoG patches and the other for the
Hessian Affine patches. To take the spatial locations of the
SIFT descriptors into account, two spatial pyramid layers are
adopted ( and ). This leads to a final representation
of 5,000 dimensions ( ) for each visual
frame, and the representations of different frames of the same
video are averaged to form the video-level representation.
For the STIP, the dense trajectory based descriptors, and

the MFCC, codebooks of 5,000, 4,000, 4,000 codewords are
adopted respectively. The spatial pyramids are not considered
for STIP and dense trajectories, because the observed perfor-
mance gain reported in prior works is not very significant. The
four dense trajectory based descriptors are quantized separately
and then combined by kernel-level fusion in the classification
process, following the settings of [1].
For all the descriptors, we use a soft-weighting method to

alleviate the quantization loss [39]. The similarities between the
descriptors and the codewords are computed based on the inner
product of L-2 normalized vectors, which is more efficient than
brute-force computation of the Euclidean distances [16].
5) Classification and Fusion: As briefly mentioned earlier,

we adopt the kernel SVM for classification. Specifically, the
one-vs-all strategy is employed to train a separate classifier for
each event class using each feature. The prediction scores of
the SVM classifiers using different features are combined using
late fusion with average fusion weights. Adaptive weights may
further improve the results, but the learned fusionweights (using
methods like cross validation) were often observed to be less
generalizable to new test data.
This baseline system contains critical components of many

recent top-performing systems. The three features SIFT, STIP,
and MFCC were jointly used in the top-performing system of
TRECVID multimedia event detection task in 2010 [5], and the
dense trajectory features were used as the central technique in
the top-performing system of the same task in 2013 [2].

B. Alternative Techniques

This section discusses several alternative techniques that
are potentially useful for improving the speed of the baseline
system, covering all the components of a video event recogni-
tion system. The goal is to identify the best suitable techniques
for each component of the system to obtain a high recognition

accuracy while optimizing the speed. Notice that some of the
adopted techniques were originally proposed to optimize the
speed of various recognition problems, but they were mostly
studied separately in the literature. This paper evaluates many
technical options and integrates the findings to realize a fast
video event recognition system. In the following we introduce
the evaluated techniques.
1) Alternative Features: Because of slow computation,

strong features like the dense trajectories cannot be deployed in
a fast recognition system. We only evaluate alternative visual
features in this work as the audio features like the MFCC are
very efficient. The visual features listed below are selected
because they are all relatively efficient. Notice that we do
not consider all kinds of spatial-temporal features computed
densely on all the frames like the fast HOG/HOF from [17], as
they still require much more time than the static frame-based
features, which violates our ultimate goal of developing a super
fast recognition system.
• Convolutional Neural Network (CNN) based features:
Recently, the off-the-shelf CNN features [40] have been
popular in many visual recognition tasks. Several works
have extracted frame-level features from a CNN model
trained on the ImageNet data and reported promising
video categorization performance [41], [42]. The ap-
pealing results clearly demonstrated that the CNN features
are powerful and should be considered as an option. In
this work, we adopt the AlexNet model [43] and use the
outputs of the seventh fully-connected layer as features
(4,096 dimensions).

• DIFT and DURF: The sparse SIFT has been observed to
be very useful, but is computationally slow. We therefore
adopt the fast versions of the dense SIFT (DIFT) and dense
SURF (DURF) descriptors, developed by the authors of
[16]. These descriptors have been shown to be effective for
image-based concept detection. A visual codebook of 500
codewords is generated to quantize each of the two dense
descriptors with the spatial pyramids.

• Self-Similarities (SSIM): Another static visual feature con-
sidered here is SSIM [44], which is also a local descriptor
like the SIFT but is computed in a very different way.
Instead of replying on the gradients within a local frame
patch, SSIM quantizes a correlation map of the patch in a
larger window. This descriptor is also computed on densely
sampled patches, and the same form of quantization is per-
formed using a codebook of 500 codewords.

• Color Moment (CM): Color is not considered in the base-
line system, so we expect that this simple and efficient
global descriptor may improve the results. Lab color space
is adopted, and the first three moments in each of the three
Lab channels are computed and concatenated. Each frame
is divided into 25 grids, and the color moments are com-
puted in each grid separately and then concatenated to form
a final representation.

• GIST: This is another global descriptor, computed based
on the outputs of Gabor-like filters over an image partition
of 16 grids [45]. Eight orientations and four scales are used
to generate the Gabor filters, leading to a representation of
512 dimensions.
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• Local Binary Patterns (LBP) [46]: This feature compares
each frame pixel to its neighboring pixels (8 neighbors in
total). The pixel is then labeled using binary numbers based
on the comparison results. The binary vectors (
dimensions) of all the pixels are accumulated to form the
LBP representation of a frame.

• Tiny Images (TINY) [47]: This feature is very simple,
computed by concatenating pixel values of each frame re-
sized to pixels (3,072 dimensions). The resized
tiny frames are used to control the dimension of the repre-
sentation. In addition, when using very small frame sizes,
it is also helpful for reducing the misalignments of similar
semantics across frames.

2) Alternative Quantization Methods: The bag-of-words
quantization is needed to consolidate the feature sets into
fixed-dimensional video representations, including SIFT, STIP,
dense trajectory descriptors and MFCC from the baseline, and
DIFT, DURF and SSIM from the features listed in the previous
subsection.
One option is to use the inner product of L-2 normalized vec-

tors like the baseline system. We also adopt the random forest
[22] to further reduce the quantization time. Following [22], we
adopt a random forest of 4 trees, each with a depth of 7 levels.
This generates a vocabulary of 512 words, similar to the adopted
vocabulary sizes of most features in the inner product based
quantization process. For the features that do not use the spa-
tial pyramid in quantization (e.g., the MFCC), we use 4 trees of
10 levels, leading to vocabularies of 4,096 words.
3) Alternative Classification and FusionMethods: Compared

with feature extraction, classification and fusion are much more
efficient. However, as our goal is trying to reach the speed limit
of video event recognition, alternative methods saving even a
half second of processing time are worth exploring. For classi-
fication, we consider SVM with the fast Histogram Intersection
(HI) kernel from [26], where the authors proposed to use a small
set of basis vectors to approximate the large number of support
vectors in an SVM model. This greatly reduces the testing time
as a test sample only needs to be compared with the basis vec-
tors, and the distances are used to estimate the distances with
the original support vectors. In addition, we also evaluate the
kernel ridge regression (KRR) classifier [48], which is easy to
implement and has been reported to be effective in several video
categorization tasks [6].
Different from late fusion that combines the prediction

outputs of separate classifiers trained with different features,
early fusion concatenates multiple feature representations
before classification with a single model. One drawback of
early fusion is that representations of higher dimensions may
overwhelm those in lower dimensional spaces, so some pre-
processing techniques such as normalization should be used to
avoid that. A slightly different version of the early fusion is
called kernel fusion, which computes a kernel for each feature
separately and then fuses the kernels together for classification.
Early fusion and kernel fusion are the same for several simple
forms of kernels, but are slightly different when using popular
kernels like the Gaussian. All the three fusion methods will
be evaluated in this work.

Since weighted linear fusion is frequently used in all the
aforementioned methods, the importance of each feature is
measured by its weight used in the fusion process. Average
weights have been the most popular option, which are also
adopted throughout the experiments of this work. Advanced
options for estimating adapted weights like multiple kernel
learning [49] and robust late fusion [35] demand more compu-
tations but do not improve the results significantly. In addition,
since using the adapted weights will have similar effects on all
the three fusion strategies, we expect that uniform average fu-
sion will be sufficient to judge or to compare the three methods,
i.e., the conclusion on which strategy is better will be unlikely
different when using the adapted weights.
The speed of the three fusion methods does not differ very

greatly. Early and kernel fusion are slightly faster than the late
fusion adopted in the baseline system as they only have one
SVM model. Between early and kernel fusion, the speed is the
same for kernels like HI. For the Gaussian kernel (

, where is the distance of and ), since
the exponential function has to be computed multiple times for
the kernel fusion, it is slightly slower than early fusion, for
which only one time is needed.
4) Frame Sampling: Besides feature representation and clas-

sification, another factor that affects the speed significantly is
frame sampling, which is often overlooked in the design of an
efficient system. It is obvious that using too many frames will be
computationally slow, and analyzing too few frames may not be
sufficient because of information loss. In this work, we intend to
study the relationships between the number of used frames and
recognition performance, with the goal of identifying suitable
frame numbers that represent a good tradeoff between speed
and accuracy. This study is partly motivated by recent studies on
human recognition of video events. In [7], the authors found that
less than 20 seconds were needed for humans to accurately an-
notate an 80-second video. A recent work in [29] further shows
that a very short segment with 1.5 seconds is already sufficient
for many events.
There are mainly two ways for frame sampling. The first one

is uniform sampling, which evenly selects frames over the entire
videos. Another option is continuous sampling, i.e., using con-
tinuously selected frames at the beginning, in the middle, or at
the end of a video. We will evaluate these options in the experi-
ments. We noticed that there also exist more advanced methods
for frame sampling, to maximize the information remained in
the selected frames, which however require additional compu-
tation that is not desired in the design of a super fast recognition
system.

IV. EXPERIMENTS

A. Datasets and Performance Measures
We adopt two datasets to evaluate the aforementioned tech-

niques. The first one is the Columbia Consumer Video (CCV)
dataset [7], which has been widely adopted in several recent
studies on Internet video analysis. There are 9,317 videos, di-
vided evenly into a training set and a test set. The dataset con-
tains 20 categories, 15 of which are events, annotated based
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Fig. 3. Examples of the Columbia Consumer Video dataset (left) and the new CV20 dataset we collected (right). Among the 20 categories in each dataset, most
are events, and a few (in the bottom row) are more related to objects and scenes. The task is very challenging due to the severe intra-class variations.

on Amazon’s MTurk crowdsourcing platform. On average, the
video duration is around 80 seconds. CCV is publicly available,1
and interested readers are referred to [7] for more details.
To evaluate the generalizability of the findings, we collected

another dataset of 20 categories fromYouTube, named as CV20,
containing 3,808 videos in total. Manual annotation was per-
formed for all the categories. The average video duration of this
dataset is 120 seconds. Similar to CCV, the dataset also has 15
events and 5 objects/scenes. Positive samples are evenly divided
into training and test sets. Fig. 3 gives an example for each cat-
egory in both the datasets.
The one-vs-all strategy is adopted to train separate classifiers

for each category, and the test samples are ranked based on the
predicted score values. The accuracy of recognition is measured
by the widely adopted average precision (AP), which approxi-
mates the area under the precision-recall curve. For the overall
accuracy of an entire dataset, we use mean AP (mAP) of all the
categories.
The speed of recognition is evaluated as the time needed for

feature extraction and classification. We evaluate the speed of
feature extraction and classification (including fusion) methods
separately in order to identify the most suitable techniques. For
feature extraction, we report the average time of extracting fea-
tures from CV20, i.e., the average time for processing a 120-
second video. Notice that, for the visual features, one frame is
sampled from every 2-second segment, meaning that the time is
for the feature extraction of around 60 frames. For the classifica-
tion speed, we report the average time needed for classifying a
video using models of 20 categories. All the reported speed per-
formances are evaluated on a regular PC with an Intel i7 4770
3.4 GHz CPU (using a single thread only) and 32 GB RAM.
Note that this is different from the hardware used for the con-
ference version [31].
Formost of the evaluated techniques, we adopt publicly avail-

able codes from the original authors. For instance, the codes
of sparse keypoint detectors and dense trajectories are from the

1[Online]. Available: http://www.ee.columbia.edu/dvmm/CCV/

LEAR group2 at INRIA. The STIP codes are from Laptev [37],
the DIFT/DURF codes are from Uijlings et al. [16], the CNN
codes come from the Caffe framework of Jia et al. [50], and the
fast SVM classifier codes are fromMaji et al. [26]. These codes
are adopted without major modifications, but may be further op-
timized for improved speed.

B. Evaluation Plan
Based on the discussions in Section III, we divide the evalu-

ations into the following four parts.
Part 1: Feature Representations.We first evaluate the recogni-

tion accuracy and computational efficiency of the fea-
tures. Feature extraction is the slowest step in a recog-
nition system and it is very important to identify a set
of efficient and reliable features. We examine both the
baseline features and the alternative features in this part.

Part 2: Quantization Methods. In the second part, we compare
the speed and accuracy of the two descriptor quantiza-
tion methods. This part is much more efficient than com-
puting the descriptors, but still occupies a considerable
amount of computational time.

Part 3: Classification and Fusion. After selecting the most
suitable features and quantization methods, we evaluate
classifiers and fusion strategies, with the same goal of
optimizing speed while obtaining a high accuracy.

Part 4: Number of Audio/Visual Frames. The last experiment
is to evaluate the needed audio/visual frames for event
recognition. This is not a part of the core techniques, but
is very important for speed improvement.

C. Feature Representations
Results of the feature representations are summarized in

Table I. By fusing the SIFT, STIP and MFCC features in the
baseline system, we achieve a very good mAP of 0.595 on
CCV and 0.868 on the new CV20 dataset. Fig. 4 shows the
confusion matrices of both datasets, where we can clearly see

2[Online]. Available: http://lear.inrialpes.fr/software
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TABLE I
ACCURACY (MAP) AND SPEED OF THE BASELINE AND THE ALTERNATIVE

FEATURES ON BOTH DATASETS. SPEED IS MEASURED IN SECONDS
REQUIRED FOR PROCESSING A 120-SECOND VIDEO, INCLUDING
QUANTIZATION TIME USING THE INNER PRODUCT-BASED

METHOD. THE FUSION OF MULTIPLE FEATURES IS ACHIEVED
BY THE LATE FUSION WITH EQUAL WEIGHTS. THE
DENSE TRAJECTORY FEATURE IS ONLY EVALUATED
ON CCV SINCE IT IS TOO SLOW AND CANNOT

BE USED IN FAST RECOGNITION SYSTEMS

that CCV has more correlated categories like the last three
related to wedding, which make it more difficult than CV20. As
shown in the table, adding the dense trajectory based features
can improve the results to 0.669 on CCV. We did not further
evaluate this feature on CV20 as it is too slow to be used in
our targeted fast recognition system. Even the SIFT (based on
sparse local detectors) and STIP features are not acceptable as
our goal is to spend just a few seconds to process a video.
Looking at the individual feature performance, the accuracy

of STIP is not very good compared with the more efficient static
SIFT. The main reason is that most events can be manifested
based on static scenes. While motion is useful and can serve
as a complementary clue to the static counterpart, purely com-
puting motion (i.e., HOF) and appearance (i.e., HOG) on the dy-
namic STIP local volumes is not sufficient for recognizing these
events. In contrast, the dense trajectory feature is the strongest
as it is very comprehensive, covering not only visual appear-
ance but also motion with special design to mitigate the ef-
fect of camera motion (by using the MBH descriptors). In ad-
dition, the dense trajectory features are computed densely, not
only on the moving invariant volumes detected by the STIP,
but also on other areas of the scene backgrounds. However, al-
though these motion-based features produce good accuracies,
their speed does not allow us to adopt them for fast recognition.
All the considered alternative features are efficient (see the

middle group of results in the table). Compared with the sparse
SIFT in the baseline, only 40% of the extraction time is needed
by the slowest alternative feature SSIM, and the CNN feature
only requires 3% of the time. Note that the speed of the CNN

Fig. 4. Confusion matrices of CCV and CV20, using the baseline of 3 features
(“Base3” in Table I). (a) CCV. (b) CV20.

feature is evaluated on the same CPU with Intel’s CBLAS li-
brary. If computed on GPU, the CNN feature can be even more
efficiently extracted.
Among the alternative features, CNN is very effective in

terms of mAP on both datasets. Using itself is already better
than the baseline that combines multiple traditional features.
This is extremely appealing as the CNN feature is also efficient.
For the others, DIFT and DURF are also good, while TINY is
the worst but still demonstrates strong discriminative power
(compared with a random prediction accuracy of just around
5% on both datasets).
We also evaluate the fusion of the alternative features, in

order to study if they are complementary. For this, we start from
the CNN and incrementally fuse it with the other features. A fea-
ture is dropped from fusion if it does not improve the result. As
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shown in the table, fusing DIFT and DURF can both improve
upon CNN, but combining three of them together is worse than
the fusion of CNN and DURF. Therefore, DIFT is discarded.
Similarly, most of the other features do not further improve the
result, except SSIM that helps very slightly.
We further fuse the baseline features with the alternative fea-

tures. We see that fusing the three more efficient baseline fea-
tures (Base3) with the remaining three alternative features can
achieve 0.708 on CCV and 0.912 on CV20. This is clearly better
than both the baseline and the fusion of the three alternative fea-
tures. As SIFT and STIP are fairly slow, we only use MFCC
from the baseline and fuse it with the new features. This leads
to the results shown in the bottom three rows of the table, which
are suggested to be used for fast event recognition. Interestingly,
all the three combinations are clearly better than the baseline
because of the use of the CNN feature, which is not only more
accurate but also very efficient. As for which of three combi-
nations should be adopted, it would depend on the real appli-
cation needs and hardware configurations. Notice that the com-
putational time reported in the table includes feature quantiza-
tion time. As the inner product based quantization is used in
this experiment, we expect that using the tree-based quantiza-
tion methods like the random forest will further improve speed,
as will be discussed in the following subsection.

D. Quantization Methods
All the selected features, except the CNN, require a quanti-

zation process to produce a fixed dimensional representation.
In this subsection, we compare the two descriptor quantization
methods. Fig. 5 shows the results. Overall, the accuracies of the
two methods are very similar on both datasets. For both the in-
dividual feature accuracy and the fusion accuracy, we do not
observe significant differences. The speed of the random forest
based quantization is much faster. As shown in Fig. 5(c), most of
the time indicated by the light blue bars is for descriptor calcu-
lation, and quantization costs almost negligible amount of time.
With the random forest based quantization, only around 2 sec-
onds per video are needed for computing and quantizing both
the MFCC and the DURF features (compared with 8 seconds
needed by the inner product based method), which is a very sig-
nificant improvement especially for large scale applications.

E. Classification and Fusion
Next, we discuss classification and fusion methods. We eval-

uate SVM with different kernel options, including the fastHI
kernel, the traditional HI kernel and the kernel from the base-
line. By comparing all the three kernels, we can have a better
understanding of the power of the fastHI. For KRR, we only
report the performance of the RBF kernel as we observe that
the speed of other kernels like is slower, which are thus not
desired in a fast recognition system. The three remaining alter-
native features and the MFCC are adopted in this evaluation.
Fig. 6 visualizes the results on both datasets. As shown in

(a) and (b) of the figure, the SVM is consistently better
than the HI SVM and the fastHI SVM. This is not surprising
as the is a recognized kernel particularly suitable for the his-
togram-like bag-of-words representations. For all the features,
the KRR is not as good as the SVM classifiers, but the gap is

Fig. 5. Recognition accuracy and speed of various features using the inner
product based quantization and the random forest based quantization. Accuracy
is reported on both CCV and CV20, and speed is measured by the feature ex-
traction time for processing a 120-second video. Fusion 1-3 represent the feature
combinations listed in the bottom three rows of Table I, respectively. (a) Accu-
racy (mAP) on CCV. (b) Accuracy (mAP) on CV20. (c) Speed.

not significant. The speed comparisons are shown in (c) and
(d), where we observe that the SVM is the slowest and the
fastHI SVM is extremely efficient. The speed-up from fastHI is
around 50-100 times compared with the traditional HI, which is
different from the observation of [16], where the authors only
observed a 18-times speed-up. This is because the work of [16]
used pre-computed SVM kernels, which could be reused for
all the categories. In practice, the pre-computed kernels are not
suitable as test data may arrive on the fly. Notice that the KRR
may be used together with the kernel approximation methods
for faster speed, but giving that it is similar or slightly worse
than SVM, using the fastHI SVM is sufficient for our goal.
We now move on to compare the classifiers under different

fusion settings. The fusion results are important as it is very
unlikely that only one feature is used in a robust recognition
system. As shown in Fig. 7, a very interesting observation is
that, after feature fusion, the accuracy gap among different SVM
kernels becomes smaller or even invisible in most cases. This is
very appealing as we can adopt the fastHI kernel SVM without
significant performance degradation. The gap between SVM
and KRR remains similar before and after feature fusion.
Among the three fusion methods, early and kernel fusion tend

to be slightly better than late fusion. This indicates that com-
bining features before learning the classification models is de-
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Fig. 6. Recognition accuracy (a), (b) and speed (c), (d) of the SVM classifier
(three kernels) and the KRR classifier. Speed is measured by the average clas-
sification time to process a test video in CV20. (a) Accuracy (mAP) on CCV.
(b) Accuracy (mAP) on CV20. (c) Speed. (d) Zoom-in view of the area in the
dotted box in (c).

sired, because early fusion of the features may form a new fea-
ture space where the positive and negative data samples can be
better separated. Since early/kernel fusion is also slightly more
efficient than late fusion because less models are needed to be
trained, they are more suitable to be adopted by a fast recogni-
tion system.

F. Number of Audio/Visual Frames
Finally, we measure the number of required audio and vi-

sual frames in video event recognition. The MFCC and CNN
features are used in this experiment. In addition to separately
studying the number of needed audio and visual frames, we are
also interested in comparing the two modalities.
We plot the results in Fig. 8, where the word “max” means

that the entire sequence will be used if a video is shorter than a

Fig. 7. Comparison of the three fusion methods on CCV and CV20, using dif-
ferent classification options. (a), (c) Fusion of MFCC, CNN, DURF and SSIM;
(b), (d) fusion of MFCC and CNN. (a) CCV. (b) CCV. (c) CV20. (d) CV20.

desired duration. We see that it is always harmful to sample the
audio frames, which is not surprising as, even for humans, it is
difficult to understand the content of a video by only listening
a fraction of the audio soundtrack. In contrast, sampling the vi-
sual feature appears to be safe until reaching a certain number.
On both datasets, we observe that 16 frames are suitable with
almost invisible performance degradation. This verifies our ex-
pectation that the visual channel contains significant redundant
information, while the audio channel does not.
Our observation on the number of needed visual frames is

different from a few recent studies in [30], [29]. The authors of
[30] found that only a single frame is needed for recognizing
many human actions. However, the videos used in their study
only contain a single subject with clean background, which are
quite different from the complex videos on the Internet. In ad-
dition, compared with a recent human recognition study [29],
where the authors found that a segment of 1.5 seconds is gen-
erally sufficient for humans to recognition many events in com-
plex Internet videos, our observations indicate that longer seg-
ments are needed for the automatic machine algorithms. This is
because the capability of current automatic techniques are still
far below that of the humans.
Comparing the sampling strategies, uniform sampling is

clearly better, implying that frames of the entire video are in-
formative. Also, the continuous sampling method will involve
redundant information as nearby frames tend to be similar.
Among the continuous sampling methods, “Middle” is slightly
better in most cases, indicating that the middle part of the videos
may contain more important or representative information. In
addition, on CV20 which has longer videos (average duration
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Fig. 8. Recognition accuracies with different numbers of sampled audio/visual frames. Sampling the audio frames is always harmful, while good recognition
results can be maintained by sampling the visual frames. Observations on the two datasets are fairly consistent. (a) MFCC on CCV. (b) CNN on CCV. (c) MFCC
on CV20. (d) CNN on CV20.

Fig. 9. Per-category accuracies of CV20, using different numbers of uniformly sampled frames. This figure is best viewed on screen with magnification. (a) MFCC.
(b) CNN.

120 seconds; 50% longer than CCV), continuous sampling is
significantly worse than uniform sampling, as more information
loss will be incurred when continuously sampling the same
number of frames from longer videos.

We further plot the per-category performances with different
numbers of uniformly sampled frames in Fig. 9, using the CV20
dataset. We see that the performance trends across different
categories are generally consistent. For MFCC, most categories
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TABLE II
SUMMARY OF RECOMMENDED SYSTEM OPTIONS FOR FAST EVENT
RECOGNITION, IN COMPARISON WITH THE 3-FEATURE BASELINE
SYSTEM. THE TIME IS MEASURED IN SECONDS NEEDED FOR
CLASSIFYING A 120-SECOND VIDEO, USING MODELS OF

THE 20 CATEGORIES IN CV20

show performance degradation immediately when reducing
the number of sampled frames. There are a few categories
like “trumpet performance” and “waterfall” that do not suffer
from audio sampling. After checking the videos in these cate-
gories, we find that the audio soundtracks are more consistent
throughout these samples, i.e., containing similar sounds from
the beginning to the end. For the visual features, the trends are
also quite consistent, except two categories “sky diving” and
“doing graffiti”.

V. SUMMARY OF FINDINGS
We have evaluated many options to improve recognition

speed. This section summarizes several important findings.
Selecting suitable features is the most critical part in de-

signing a fast recognition system. We suggest using the audio
feature MFCC, fused with a few fast static visual features like
CNN and DURF. The motion-based features like STIP and
dense trajectories are useful, but are not suggested because they
need to process more frames. In terms of accuracy, the results
are already good by using only the audio and the static visual
features, which is consistent with human recognition as we can
easily tell most of the events based on a set of static frames. In
addition, the results also indicate that the random forest based
quantization method should be adopted with significant speed
improvement and no performance degradation.
For classification and fusion, we found that the fastHI SVM

is very suitable, generating similar accuracies to the SVM
particularly under multi-feature fusion settings. The fastHI is
much more efficient, with a speed-up of 50-100 times over the
. KRR is also a good option in terms of speed but is slightly

worse than SVM.We observed slightly better results from early
and kernel fusion than the late fusion. Late fusion is more ex-
pensive as more classification models have to be trained.
For the suitable number of audio/visual frames, we found that

audio frames should be sampled densely and down-sampling is
always harmful. For the visual frames, we can uniformly select
just 16 frames per video. This greatly reduces the feature extrac-
tion time and similar recognition accuracies can be obtained.
Based on these findings, we summarize the suggested system

components for fast recognition in Table II. We name the final
system as SUPER, standing for Speeded Up Event Recogni-
tion. Significant speed-up is achieved by using these alternative
methods. Specifically, SUPER is 368 times faster than the 3-fea-
ture baseline as shown in Table II. The speed-up over the 4-fea-

ture baseline (with another dense trajectory feature) is as high as
2,350 times. The accuracy of SUPER is higher than the baseline
on both datasets because of the strong CNN features. Compared
with the extremely slow 4-feature baseline with the additional
dense trajectories, the accuracy is also better (
on CCV). Furthermore, by including a few more efficient fea-
tures like the DURF, the recognition accuracy may be further
boosted with minor additional computation.

VI. CONCLUSION
In this paper, we have conducted a comprehensive study

on various technical options for event recognition in Internet
videos. With the goal of optimizing speed while obtaining a
high accuracy, our findings lead to a super efficient system that
is 2,350 times faster than a strong baseline system using several
widely adopted features. This is extremely important in the
era of big video data, where the amount of data is increasing
at a faster pace than the power of computational devices.
Although event recognition can be processed off-line in most
applications, it is difficult to deal with the Web-scale video data
even with the most powerful clusters. In addition, this super
fast recognition system can also be easily deployed on the less
powerful mobile devices for applications like efficient personal
video collection management.
The major message delivered in this work is that event recog-

nition in Internet videos can be achieved efficiently, and re-
search in this area should pay more attention to the computa-
tional efficiency rather than purely focusing on optimizing the
recognition accuracy. While our observations are encouraging,
there is still room for further improvements. One important di-
rection is to exploit the CNN features as they are very pow-
erful. Fine-tuning a neural network model using video annota-
tions will probably produce better CNN features than directly
using a network trained on images. As the numerous parame-
ters in the neural networks require a huge amount of training
samples to be well tuned, a large collection of videos with re-
liable annotations is needed to support future investigations on
this learning paradigm. In addition, it is interesting to study the
effectiveness of efficient features from automatic speech recog-
nition (ASR), which contain useful clues different from the stan-
dard audio features used in this work.

REFERENCES
[1] H. Wang and C. Schmid, “Action recognition with improved trajecto-

ries,” inProc. IEEE Int. Conf. Comput. Vis., Dec. 2013, pp. 3551–3558.
[2] R. Aly et al., “The AXES submissions at TrecVid 2013,” in Proc. NIST

TRECVID Workshop, 2013.
[3] “TRECVID multimedia event detection track,” NIST. Gaithersburg,

MD, USA, Dec. 2009 [Online]. Available: http://www.nist.gov/itl/iad/
mig/med.cfm/, Accessed on: Jan. 2014

[4] J. Liu, J. Luo, and M. Shah, “Recognizing realistic actions from videos
“in the wild”,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun.
2009, pp. 1996–2003.

[5] Y.-G. Jiang et al., “Columbia-UCF TRECVID2010 multimedia event
detection: Combining multiple modalities, contextual concepts, and
temporal matching,” in Proc. NIST TRECVID Workshop, 2010.

[6] Z.-Z. Lan et al., “CMU-Informedia@TRECVID 2013multimedia
event detection,” in Proc. NIST TRECVID Workshop, 2013.

[7] Y.-G. Jiang, G. Ye, S.-F. Chang, D. Ellis, and A. C. Loui, “Consumer
video understanding: A benchmark database and an evaluation of
human and machine performance,” in Proc. ACM Int. Conf. Multi-
media Retrieval, 2011.



JIANG et al.: SUPER FAST EVENT RECOGNITION IN INTERNET VIDEOS 1185

[8] I. Laptev, M. Marszalek, C. Schmid, and B. Rozenfeld, “Learning re-
alistic human actions from movies,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., Jun. 2008, pp. 1–8.

[9] Y.-G. Jiang, J. Yang, C.-W. Ngo, and A. G. Hauptmann, “Represen-
tations of keypoint-based semantic concept detection: A comprehen-
sive study,” IEEE Trans. Multimedia, vol. 12, no. 1, pp. 42–53, Jan.
2010.

[10] K. Lee and D. P. W. Ellis, “Audio-based semantic concept classifi-
cation for consumer video,” IEEE Trans. Audio, Speech, Language
Process., vol. 18, no. 6, pp. 1406–1416, Aug. 2010.

[11] A. Habibian, T. Mensink, and C. G. M. Snoek, “Videostory: A new
multimedia embedding for few-example recognition and translation of
events,” in Proc. ACM Int. Conf. Multimedia, 2014, pp. 17–26.

[12] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, pp. 91–110, 2004.

[13] H. Bay, A. Ess, T. Tuytelaars, and L. van Gool, “SURF: Speeded up
robust features,” Comput. Vis. Image Understanding, vol. 110, no. 3,
pp. 346–359, 2008.

[14] J. Knopp,M. Prasad, G.Willems, R. Timofte, and L. van Gool, “Hough
transform and 3D SURF for robust three dimensional classification,”
in Proc. Eur. Conf. Comput. Vis., 2010, pp. 589–602.

[15] E. Nowak, F. Jurie, and B. Triggs, “Sampling strategies for bag-of-
features image classification,” in Proc. Eur. Conf. Comput. Vis., 2006,
pp. 490–503.

[16] J. R. R. Uijlings, A. W. M. Smeulders, and R. J. H. Scha, “Real-time
visual concept classification,” IEEE Trans. Multimedia, vol. 12, no. 7,
pp. 665–680, Nov. 2010.

[17] J. R. R. Uijlings, I. C. Duta, N. Rostamzadeh, and N. Sebe, “Realtime
video classification using dense HOF/HOG,” in Proc. ACM Int. Conf.
Multimedia Retrieval, 2014, pp. 145–152.

[18] A. Karpathy et al., “Large-scale video classification with convolutional
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2014, pp. 1725–1732.

[19] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” in Proc. Int. Conf. Mach. Learning,
2010, pp. 495–502.

[20] K. Simonyan and A. Zisserman, “Two-stream convolutional networks
for action recognition in videos,” in Proc. Conf. Neural Inf. Process.
Syst., 2014, pp. 568–576.

[21] D. Nister and H. Stewenius, “Scalable recognition with a vocabulary
tree,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2006, vol.
2, pp. 2161–2168.

[22] F. Moosmann, E. Nowak, and F. Jurie, “Randomized clustering forests
for image classification,” IEEE Trans. Pattern Anal. Mach. Intell., vol.
30, no. 9, pp. 1632–1646, Sep. 2008.

[23] T.-H. Yu, T.-K. Kim, and R. Cipolla, “Real-time action recognition by
spatiotemoral semantic and structural forests,” in Proc. Brit. Mach. Vis.
Conf., 2010, pp. 52.1–52.12.

[24] J. Shotton, M. Johnson, and R. Cipolla, “Semantic texton forests for
image categorization and segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2008, pp. 1–8.

[25] N. Inoue and K. Shinoda, “Neighbor-to-neighbor search for fast coding
of feature vectors,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 1233–1240.

[26] S. Maji, A. C. Berg, and J. Malik, “Classification using intersection
kernel support vector machines is efficient,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., Jun. 2008, pp. 1–8.

[27] F. Perronnin, J. Sanchez, and T. Mensink, “Improving the fisher kernel
for large-scale image classification,” in Proc. Eur. Conf. Comput. Vis.,
2010, pp. 143–156.

[28] A. Habibian and C. G. M. Snoek, “Stop-frame removal improves web
video classification,” in Proc. ACM Int. Conf. Multimedia Retrieval,
2014, pp. 499–502.

[29] S. Bhattacharya, F. X. Yu, and S.-F. Chang, “Minimally needed evi-
dence for complex event recognition in unconstrained videos,” in Proc.
ACM Int. Conf. Multimedia Retrieval, 2014, pp. 105–112.

[30] K. Schindler and L. van Gool, “Action snippets: How many frames
does human action recognition require?,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recog., Jun. 2008, pp. 1–8.

[31] Y.-G. Jiang, “Super: Towards real-time event recognition in internet
videos,” in Proc. ACM Int. Conf. Multimedia Retrieval, 2012, pp. 7–14.

[32] Z.-Z. Lan, Y. Yang, N. Ballas, and A. Hauptmann, “Resource con-
strained multimedia event detection,” in Proc. Int. Conf. Multimedia
Modeling, 2014, pp. 388–399.

[33] Z. Ma, S.-I. Yu, and A. G. Hauptmann, “How to efficiently handle
large-scale multimedia event detection,” E-Letter IEEE Multimedia
Commun. Tech. Committee, vol. 9, no. 3, pp. 26–28, 2014.

[34] P. Natarajan et al., “BBN VISER TRECVID 2011 multimedia event
detection system,” in Proc. NIST TRECVID Workshop, 2011.

[35] G. Ye, D. Liu, I.-H. Jhuo, and S.-F. Chang, “Robust late fusion with
rank minimization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2012, pp. 3021–3028.

[36] K. Mikoljczyk and C. Schmid, “Scale and affine invariant interest point
detectors,” Int. J. Comput. Vis., vol. 60, pp. 63–86, 2004.

[37] I. Laptev, “On space-time interest points,” Int. J. Comput. Vis., vol. 64,
pp. 107–123, 2005.

[38] B. E. Stein and T. R. Stanford, “Multisensory integration: Current is-
sues from the perspective of the single neuron,” Nature Rev. Neurosci.,
vol. 9, pp. 255–266, 2008.

[39] Y. G. Jiang, C.W. Ngo, and J. Yang, “Towards optimal bag-of-features
for object categorization and semantic video retrieval,” in Proc. ACM
Int. Conf. Image Video Retrieval, 2007, pp. 494–501.

[40] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson,
“CNN features off-the-shelf: An astounding baseline for recog-
nition,” CoRR, vol. abs/1403.6382, 2014 [Online]. Available:
http://arxiv.org/abs/1403.6382

[41] C. G. M. Snoek et al., “MediaMill at TRECVID 2014: Searching con-
cepts, objects, instances and events in video,” in Proc. NIST TRECVID
Workshop, Nov. 2014.

[42] Z. Xu, Y. Yang, and A. G. Hauptmann, “A discriminative CNN video
representation for event detection,” CoRR, vol. abs/1411.4006, 2014
[Online]. Available: http://arxiv.org/abs/1411.4006

[43] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Conf. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[44] E. Shechtman and M. Irani, “Matching local self-similarities across
images and videos,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog.,
Jun. 2007, pp. 1–8.

[45] A. Oliva and A. Torralba, “Modeling the shape of the scene: A holistic
representation of the spatial envelope,” Int. J. Comput. Vis., vol. 42, pp.
145–175, 2001.

[46] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution gray-scale
and rotation invariant texture classification with local binary patterns,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 971–987,
Jul. 2002.

[47] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large database for non-parametric object and scene recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958–1970, Nov.
2008.

[48] U. Brefeld, T. Gaertner, T. Scheffer, and S. Wrobel, “Efficient co-reg-
ularized least squares regression,” in Proc. Int. Conf. Mach. Learning,
2006, pp. 137–144.

[49] F. R. Bach, G. R. Lanckriet, and M. I. Jordan, “Multiple kernel
learning, conic duality, and the SMO algorithm,” in Proc. Int. Conf.
Mach. Learning, 2004.

[50] Y. Jia et al., “Caffe: Convolutional architecture for fast feature em-
bedding,” CoRR, vol. abs/1408.5093, 2014 [Online]. Available: http://
arxiv.org/abs/1408.5093

Yu-Gang Jiang received the Ph.D. degree in com-
puter science from the City University of HongKong,
Kowloon, Hong Kong, in 2009.
From 2008 to 2011, he was with the Department

of Electrical Engineering, Columbia University, New
York, NY, USA. He is currently an Associate Pro-
fessor of Computer Science with Fudan University,
Shanghai, China. His current research interests in-
clude multimedia retrieval and computer vision.
Dr. Jiang is one of the organizers of the annual

THUMOS Challenge on Large Scale Action Recog-
nition, and is currently serving as a Program Chair of ACM ICMR 2015. He
was the recipient of many awards, including the prestigious ACM China Rising
Star Award in 2014.



1186 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 17, NO. 8, AUGUST 2015

Qi Dai received the B.Sc. degree in computer sci-
ence from the East China University of Science and
Technology, Shanghai, China, in 2011, and is cur-
rently working toward the Ph.D. degree at the School
of Computer Science, Fudan University, Shanghai,
China.
His current research interests include multimedia

retrieval and computer vision.

Tao Mei received the B.E. degree in automation and
Ph.D. degree in pattern recognition and intelligent
systems from the University of Science and Tech-
nology of China, Hefei, China, in 2001 and 2006,
respectively.
He is a Lead Researcher with Microsoft Research,

Beijing, China. He has authored or coauthored over
100 papers in journals and conferences, and holds 13
U.S. granted patents. His current research interests
include multimedia information retrieval and com-
puter vision.

Dr. Mei is an Associate Editor of the IEEE TRANSACTIONS ON MULTIMEDIA,
Multimedia Systems, and Neurocomputing. He is the General Co-Chair of ACM
ICIMCS 2013 and the Program Co-Chair of IEEE ICME 2015, IEEE MMSP
2015, and MMM 2013. He was the recipient of several awards from prestigious
multimedia journals and conferences, including the IEEE Circuits and Systems
Society Circuits and Systems for Video Technology Best Paper Award in 2014,
the IEEE TRANSACTIONS ON MULTIMEDIA Prize Paper Award in 2013, and the
Best Paper Awards at ACM Multimedia in 2009 and 2007.

Yong Rui received the B.S. degree from Southeast
University, Dhaka, Bangladesh, the M.S. degree
from Tsinghua University, Beijing, China, and the
Ph.D. degree from the University of Illinois at
Urbana-Champaign, Champaign, IL, USA. He also
holds a Microsoft Leadership Training Certificate
from the Wharton Business School, University of
Pennsylvania, Philadelphia, PA, USA.
He is currently a Senior Director and Principal

Researcher with Microsoft Research Asia, Beijing,
China, leading research effort in the areas of multi-

media search and mining, knowledge mining, and social computing. He has
authored or coauthored 16 books and book chapters, and over 100 referred
journal and conference papers. He holds 56 issued U.S. and international
patents.
Dr. Rui is a Fellow of IAPR and SPIE, and a Distinguished Scientist of

ACM. He is an Executive Member of ACM SIGMM, and the founding Chair of
its China Chapter. He is the Editor-in-Chief of the IEEE MultiMedia Magazine,
an Associate Editor of the ACM Transactions on Multimedia Computing,
Communication, and Applications, a founding Editor of the International
Journal of Multimedia Information Retrieval, and a founding Associate Editor
of IEEE ACCESS. He was an Associate Editor of the IEEE TRANSACTIONS
ON MULTIMEDIA (2004–2008), the IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS FOR VIDEO TECHNOLOGY (2006–2010), the ACM/Springer Mul-
timedia Systems Journal (2004–2006), and the International Journal of
Multimedia Tools and Applications (2004–2006). He is on the Organizing
Committee and Program Committee of numerous conferences. He was General
Co-Chair of ACM Multimedia in 2009 and 2014, ACM ICMR in 2006 and
2012, and ICIMCS in 2010, and Program Co-Chair of ACM Multimedia in
2006, Pacific Rim Multimedia in 2006, and IEEE ICME in 2009. He was on
the Steering Committees of ACM Multimedia, ACM ICMR, IEEE ICME and
PCM.

Shih-Fu Chang is the Richard Dicker Professor
and Senior Vice Dean with Columbia University
Engineering School, New York, NY, USA. His
research interests include multimedia informa-
tion retrieval, computer vision, signal processing,
machine learning, content-based image search,
video recognition, image authentication, hashing
for large image database, and novel application of
visual search in brain machine interface and mobile
communication. He has authored or coauthored over
300 peer-reviewed publications, and holds 25 issues

patents and technologies licensed to companies.
Dr. Chang is a Fellow of the American Association for the Advancement of

Science. He served as the Editor-in-Chief of the IEEE Signal Processing Mag-
azine from 2006 to 2008. He was the recipient of the IEEE Signal Processing
Society Technical Achievement Award, the ACM Multimedia SIG Technical
Achievement Award, the IEEE Kiyo Tomiyasu Award, the IBM Faculty Award,
and the Great Teacher Award from the Society of Columbia Graduates.


