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ABSTRACT

We participated in the Huawei Accurate and Fast Mobile
Video Annotation Challenge (MoVAC) at IEEE ICME 2014.
Three result runs were submitted by combining different fea-
tures and classification techniques, with emphasis on both ac-
curacy and efficiency. In this paper, we briefly summarize
the techniques used in our system, and the components used
for generating each of the three submitted results. One novel
component in our system is a specially tailored deep neural
network (DNN) that can explore the relationships of multiple
features for improved annotation performance, which is very
efficient based on an implementation with the GPU. Only 18.8
seconds were needed by one of our DNN-based submissions
to process a test video. By combining the DNN with the tra-
ditional SVM learning, we achieved the best accuracy across
all the worldwide submissions to this challenge.

Index Terms— Video annotation, deep neural network,
multimodal features.

1. INTRODUCTION

Recent years have witnessed an explosive growth of user-
generated videos, mostly captured by hand-held mobile de-
vices. There is an urgent need to developing automatic video
annotation techniques, which can be deployed in many appli-
cations, such as personal video collection management and
large scale video search.

In addition to the long-standing semantic gap that has
posed a big challenge for automatically recognizing video
contents, the extremely large scale of video databases in most
applications also creates difficulties for many existing tech-
niques. Extensive studies have been conducted to improve
the recognition performance. Most existing works empha-
sized on designing effective features [1], multi-feature fusion
methods [2], or novel recognition algorithms [3], while very
few of them focused on improving the speed efficiency [4].

The MoVAC Challenge proposed by Huawei Technolo-
gies emphasizes both accuracy and efficiency of a recogni-
tion system, to ensure that the proposed techniques can be
deployed in realistic applications. In this paper, we describe a
comprehensive system to tackle this interesting and important

challenge. Several features are extracted from both the visual
and audio channels of the video data, which are then fed into
learning algorithms for content annotation. For the learning
methods, we consider both the traditional SVM classifier, and
the recently emerging deep learning techniques. In particu-
lar, we developed a deep neural network (DNN) with special
design to better explore feature relationships for improved an-
notation performance.

Fig. 1 gives the framework of our system. First, au-
dio/visual frames are sampled from an input video. After that,
several popular features are computed and used as inputs of
both the SVM and the DNN models. Finally, the outputs of
the classifiers are used in a post-processing step to generate
frame-level video annotations.

By using different subsets of the system components, we
submitted three result runs, which are summarized as follows:

1. Run-1 (DNN Fast) is based on a regularized deep neu-
ral network, as illustrated in Fig. 2, which has very fast
testing speed. Because this run emphasizes more on
speed, only two very efficient features are adopted, fol-
lowing [4].

2. Run-2 (SVM Strong) is purely based on the SVM clas-
sifiers, which have been popular for years. All the
extracted features are employed, in order to optimize
recognition accuracy.

3. Run-3 (DNN Strong + SVM Strong) is a combination
of both the DNN and the SVM models. By harnessing
both kinds of learning methods, we expect to generate
strong accuracies. The Fisher Vectors are not used for
the DNN due to the high dimensions of the features,
which incur too many parameters to be well learned.

Among the three runs, Run-1 focuses more on the speed
but also selects features carefully to maintain a good recog-
nition accuracy. Run-2 and Run-3 emphasize on accuracy by
using more features and classifiers.

The rest of this paper is organized as follows. Section 2
elaborates all the technical components adopted in our sys-
tem. Section 3 presents the experimental results on both the
validation set and the official test set. Finally, Section 4 con-
cludes this paper.
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Fig. 1. The framework of our proposed video annotation system. Audio and visual frames are first extracted, on which five kinds
of features are computed. For MFCC, DIFT and SIFT, both Bag-of-Words and Fisher Vector are used to produce quantized
feature representations. DNN and linear SVM are adopted to classify the features. We submitted three runs using different
combinations of the components, emphasizing either on speed (Fast) or on accuracy (Strong). See texts for more explanations.

2. TECHNICAL APPROACH

In this section, we elaborate the technical details of our sys-
tem. As shown in Fig. 1, we followed a standard visual recog-
nition pipeline, where features are first extracted and encoded,
which are then used as the inputs of classifiers for recogni-
tion/annotation.

2.1. Frame Sampling

For visual frames, we sampled one frame from every two sec-
onds of video sequence on the training samples. Further in-
creasing the sampling density may improve the results but
will incur significant additional training time. For the test
videos, we sampled one frame per second to increase the an-
notation accuracy. All of the visual features discussed later
were extracted from the same set of frames.

For the audio channel, we sampled audio frames densely
from the soundtracks. The temporal width of a frame is 32ms
and nearby audio frames have 16ms overlap. The MFCC fea-
tures were computed on these audio frames.

2.2. Feature Extraction

We extracted the following audio-visual features:
SIFT: SIFT feature [5] has been widely used in many vi-

sual recognition tasks. It describes the gradient information
around the keypoint. Here the standard DoG keypoints detec-
tor is used. A 128-d descriptor is extracted from each key-
point. SIFT feature was extracted on every sampled frame.

Both Bag-of-Words and Fisher Vector were used to encode
descriptors (cf. Section 2.3).

DIFT: We adopted Uijlings’ dense SIFT implementa-
tion [6], dubbed DIFT, which is much faster than the standard
SIFT. It densely extracts the SIFT feature on the whole frame.
Like SIFT, both encoding methods were used.

Global Features: In addition to the SIFT local features,
we also extracted a few global features, including Color Mo-
ments, GIST, LBP, and TINY. The Color Moments feature
was computed by aggregating the first 3 moments of the 3
channels in Lab color space over 5×5 frame grid partitions.
The GSIT, LBP, and TINY were implemented following the
settings of [7]. The four features were concatenated as a sin-
gle feature vector for classification.

Part-Level Attributes: We computed a part-level at-
tributes feature, previously adopted in our work on Medi-
aEval2013 Violent Scenes Detection Task [8]. Part filters
learned from the ImageNet classes using the deformable part-
based models were used to generate filter response maps over
the visual frames. An attribute descriptor was formed by con-
catenating the max response values of the filters applied to
three scales of each frame. For more details, please see [8].

MFCC: Acoustic features are complementary to the vi-
sual features in many video content recognition tasks. Here
we adopted the well-known MFCC. Each soundtrack segment
was first obtained by picking a 10-second window around a
sampled visual frame. For each segment, we extracted MFCC
features on its audio frames. Only Bag-of-Words was used to
encode this feature, and the Fisher vector was not used be-
cause of its poor result found from our earlier experiments.



2.3. Feature Encoding

For the SIFT, DIFT, and MFCC features, we have a set of de-
scriptors per frame/segment. This creates difficulties for clas-
sifiers which normally require fixed dimensional inputs. To
convert the sets of features into fixed dimensional represen-
tations, we adopted two well-known methods: Bag-of-Words
and Fisher Vector.

Bag-of-Words (BoW) [9]: A soft-weighting strategy [10]
was used to alleviate the quantization loss of BoW. For
MFCC, the vocabulary size is 4000. For SIFT and DIFT, the
vocabulary size is 500. Spatial pyramid was adopted for the
visual SIFT and DIFT features, using grids 1×1, 3 × 1 and
2 × 2. Finally, for each frame and each feature, a BoW rep-
resentation of 4000 dimensions was formed by concatenating
quantized features from the spatial grids.

Fisher Vector (FV): Recently, FV [11] has been proved
to be better than BoW in many visual recognition problems,
by encoding the first and second order information instead
of simple count statistics. We first applied the PCA on the
SIFT/DIFT features, reducing the dimension by a factor of
two as in [11]. Then, a Gaussian Mixture Model (GMM) was
adopted to fit the data with the number of Gaussians K=256.
Each frame was then represented with a 2×D×K FV, where
D = 64 is the feature dimension after PCA reduction. Fi-
nally, L2 normalization was applied to the Fisher vectors be-
fore classification.

2.4. Classification

As aforementioned, we used linear SVM and DNN for clas-
sification. Both are efficient in the test phase.

SVM: We trained classification models with the simple
linear SVM. In consideration of memory usage, a subset
of the training samples were used. One-vs-all SVMs were
trained for each of the target classes. When using multiple
features as inputs for SVM training, we adopted linear fu-
sion, which is widely used. Fusion weights were estimated
on the validation set. The outputs of the linear SVMs were
normalized to the range in [0, 1] for the ease of comparison
across different classes.

DNN: Deep learning architectures have exhibited strong
performance in many real world applications ranging from
speech recognition [12] to large scale visual recognition [13].
We recently developed a 4-layered DNN specially tailored for
video classification 1. The architecture of our DNN is shown
in Fig. 2. Using this specifically structured network, we are
able to perform feature fusion and classification simultane-
ously. Specifically, we first use one layer for each feature to
perform feature abstraction separately, and then one layer for
feature fusion from all the representations with a structural
regularization, which enables knowledge sharing among dif-
ferent features as well as reserves the unique characteristics

1Unpublished work.
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Fig. 2. Illustration of the structure of our DNN. Multiple fea-
tures are used as inputs of the network, which processes the
features separately first, and then enforces a regularization-
based framework for feature fusion and classification.

of features at the same time. Finally, the fused feature is used
as inputs of the last layer for annotation. The neural network
is trained in a back-propagation manner with the gradient de-
scent method. The outputs of last layer are prediction values
ranging in [0, 1].

2.5. Post Processing

With the prediction outputs of the SVM and the DNN models,
a few post-processing schemes were further imposed, includ-
ing fusing different kinds of classifiers and temporal smooth-
ing of the prediction scores.

Classifier Fusion: In our submitted Run-3, we further
fused the prediction values of SVM and DNN. Linear fusion
was employed, with fusion weights estimated on the valida-
tion set.

Temporal Score Smoothing: As the video semantics are
generally consistent in temporally nearby segments, we used
average values of prediction scores over a temporal window,
which is helpful for removing prediction noises. Each video
contains a set of the sampled frames {x1, x2, · · · , xm}. The
smoothed score s̃(xl) of a frame xl using a temporal window
of size 2T + 1 frames can be computed as:

s̃(xl) =

∑l+T
k=l−T

̂s(xk)

2T + 1
,

where

̂s(xk) =

 s(xk) if 1 ≤ k ≤ m,∑m
k′=1 s(xk′)

m
otherwise.

After smoothing, a frame is considered containing a class
if the prediction score is larger than a threshold, estimated
also based on the validation set.



3. EXPERIMENTS

Based on the system described earlier, we performed experi-
ments with different combinations of features and classifica-
tion methods. In the following we first introduce the experi-
mental settings and then discuss the results.

The MoVAC dataset contains 2,666 training videos and
1,455 test videos. The task is distinct from many video anno-
tation benchmarks in several ways. First, the 10 target classes
cover very diversified topics, including objects (“car”, “dog”,
“flower”, “food” and “kids”), scenes (“beach”, “city view”
and “Chinese antique building”) and events (“football” and
“party”). Second, there are many video frames containing
multiple classes. Third, the task requires annotations on tem-
poral frame level instead of entire video level. Last, speed is
also considered as an important factor, which makes outstand-
ing features like the dense trajectories [1, 14] inappropriate
for this task.

We adopt mean score as the evaluation measure, follow-
ing the official definition of MoVAC. A score of a video is
defined as the intersection over union based on the predicted
segments and the ground-truth labels:

score =

∑n
i=1 GTi ∩ Predictioni∑n
i=1 GTi ∪ Predictioni

,

where n = 10 is the total number of classes. The mean score
is computed as the average score of all the tested videos.

Following the official evaluation guideline, we randomly
divided the training set into a sub-training set (2/3 of the
videos) and a validation set (1/3 of the videos). As the la-
bels of the test set are not released, we report performances
of most evaluations on the validation set. Results on the offi-
cial test set will only be reported for the three submitted runs,
evaluated by the organizers of the Challenge.

We also report the time needed for computed each feature
and the total testing time of each submitted run. The time was
measured on the following hardwares. The feature extraction
and SVM classification parts were conducted on a worksta-
tion with an Intel i7 3.4GHz CPU and 32GB RAM. The DNN
training/testing was conducted on a single NVIDIA Telsa K20
5GB GPU, using codes implemented with the MATLAB Par-
allel Computing Toolbox.

3.1. Comparing the Speed of the Features

Before reporting the annotation accuracies, we first discuss
the speed of the feature extraction part. The feature extraction
and encoding is the slowest step in a recognition system, and
therefore it is very important to select the features that are
efficient and reliable.

We report the average time needed to compute each fea-
ture on a test video in Table 1. Notice that frame extraction
from the videos only costs a fraction of a second, which is not

Table 1. Average time needed to extract features from a test
video. The features are sorted by efficiency. MFCC and DIFT
are the most efficient features, even faster than the simple
global features.

Feature Extraction Time (s)
MFCC BoW 3.3

DIFT FV 12.5
DIFT BoW 15.4

Global 18.3
Attribute 68.0
SIFT FV 83.4

SIFT BoW 87.3

included in the feature extraction time. MFCC is the most ef-
ficient feature as the audio soundtrack is just a 1-dimensional
signal, in contrast to the 3-d visual pixels. Among the visual
features, DIFT is the most efficient one, using only around
1/7 of the time needed for computing the sparse SIFT fea-
tures. This result suggests that in the fast system we should
adopt the dense SIFT features instead of the sparse version.

In addition, we also tried to resize the visual frames to a
smaller scale for fast feature extraction, which however was
observed to hurt the performance greatly and was therefore
discarded.

3.2. Comparing the Accuracy of the Features

Next we compare the annotation accuracy of the individual
features and their combinations, using the validation set. We
only report results using the linear SVM as the classifier in
this experiment. The major conclusions of which features are
effective will not change while using the DNN. Results are
visualized in Fig. 3.

Comparing the features separately, MFCC is the worst.
The visual features are all very effective with a score between
50% and 60%. This is not surprising because most of the
target classes can be better captured by the visual clues, e.g.,
“flower”, “beach”, and “city view”.

Further combining MFCC with the visual features can im-
prove the results, because some classes may contain valuable
auditory clues like “party”. The mean score is 2.30% higher
by fusing DIFT FV with MFCC (indicated by “13” in Fig. 3)
than using DIFT FV alone (indicated by “3”). By adding the
attribute feature (indicated by “134”), the mean score is sig-
nificantly improved to 65.82%. Combining all the features
together can further improve the results (indicated by “all”),
slightly. Notice that in this fusion experiment, we do not eval-
uate all the feature combinations due to space limitation. In-
stead we incrementally add in the features, and a newly added
feature is discarded in later fusion experiments if it does not
improve the results. In the figure we only report the feature
combinations that are observed to be effective.
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Fig. 3. Accuracies (mean scores) on the validation set us-
ing linear SVM trained with individual features and their
fusion. 1. MFCC; 2. DIFT BoW; 3. DIFT FV; 4. Attribute;
5. SIFT BoW; 6. SIFT FV; 7. Global. See Section 3.2 for
more discussions.

3.3. Comparing and Fusing DNN and SVM

In this subsection, we compare and fuse the two kinds of clas-
sification methods, also on the validation set. We first use the
two most efficient features MFCC and DIFT. As shown in
Fig. 3, the FV encoding offers better performance than the
BoW. With linear SVM as the classifier, we obtained a mean
score of 58.03% (“12” in Fig. 3) with DIFT BoW and MFCC,
and 60.82% (“13” in Fig. 3) with DIFT FV and MFCC. How-
ever, the FV representation cannot be used as inputs of the
DNN because the dimension is too high. Therefore we only
adopted the BoW encoding for the DNN and compare it with
the FV encoding using SVM. Notice that the DNN classifi-
cation with the DIFT BoW and the MFCC features is exactly
the setting used in our submitted Run-1. We achieved a mean
score of 63.22% on the validation set, which is better than the
linear SVM approach using DIFT FV and MFCC (60.82%).
This clearly shows that DNN is powerful while using even
slightly weaker features. We attribute this to a fact that the
DNN structure we used was designed with a special function
of modeling feature relationships, which cannot be discussed
in detail in this paper due to space limitation.

We also compare the two methods using more features.
This time the DNN is trained based on MFCC, DIFT BoW,
SIFT BoW and the Attribute features, namely “DNN Strong”,
and the SVM is trained using all the features (indicated by
“SVM Strong” in Fig. 1, which is our Run-2). This “DNN
Strong” approach and the “SVM Strong” (Run-2) approach
achieve mean scores of 69.61% and 68.35%, respectively,
which again verify the effectiveness of the DNN although less
features were used.

We further fuse the two kinds of classifiers to study
whether the two methods are complementary. Linear fusion
is used, with weights estimated on the validation set. We fuse
the two methods using their “strong” settings (i.e., our sub-

Table 2. Accuracies of our submitted approaches on the vali-
dation set. Combining the two kinds of classifiers leads to the
highest result.

Approach Mean Score
DNN Fast 63.22%

SVM Strong 68.35%
DNN Strong+SVM Strong 71.17%

Table 3. Official accuracies and speed of our submitted ap-
proaches on the test set of MoVAC. Speed is measured by the
total time of processing the entire test set, including all the
processing modules from frame sampling to classification.

ID Approach Mean Score Time (s)
1 DNN Fast 62.53% 27,411
2 SVM Strong 63.14% 912,417
3 DNN Strong+SVM Strong 68.94% 912,417

mitted Run-3). This simple fusion method further improves
the accuracy to 71.17% on the validation set, indicating that
SVM and DNN are complementary to some extent. Table 2
summarizes the accuracies (on the validation set) of the three
approaches used in our official submissions.

Fig. 4 further gives several visual examples of the anno-
tation results. We can observe that many false alarms share
some common patterns with the positive samples, e.g., the
water scenes with the “beach” class and the grass fields with
the “football” class. Stronger features are needed to distin-
guish these samples, which deserve in-depth future investiga-
tions.

3.4. Official Submissions

Finally, we report the results of our official submissions on
the test set of MoVAC in Table 3. Overall, the results are con-
sistent with that obtained on the validation set. “DNN Fast” is
a practically preferable approach as it is highly efficient and is
just a few percents lower. Note that the estimated processing
time of Run-3 is the same as that of Run-2. This is because
the time needed by DNN prediction is almost negligible com-
pared with that of feature extraction, and Run-2 and Run-3
have exactly the same set of features.

4. CONCLUSION

In this paper, we have discussed a comprehensive system
for video annotation. Our system consists of a large set of
audio-visual features and two kinds of classification methods,
SVM and DNN. In particular, the DNN method has a special
structure tailored for video annotation with multiple features,
which has been observed to be consistently better than the



kids dog city car flower beach party football food historical site 

Fig. 4. Example annotation results on the validation set by the “DNN Strong+SVM Strong” approach. For each class, the first
three rows are correctly annotated frames and the last two rows are false alarms.

SVM. We achieved the best accuracy across all the submit-
ted results to this challenge. Our approach is also efficient.
The DNN based Run-1 only requires 18.8 seconds to process
a test video, including both feature extraction and classifica-
tion. One promising direction to further improve the perfor-
mance is to develop deep learning techniques that can learn
the features directly from the raw video data, in addition to
using the hand-crafted features in the current system.
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