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Abstract
In practical applications, it is often observed that
high-dimensional features can yield good perfor-
mance, while being more costly in both compu-
tation and storage. In this paper, we propose a
novel method called Bayesian Hashing to learn an
optimal Hamming embedding of high-dimensional
features, with a focus on the challenging applica-
tion of face recognition. In particular, a boosted
random FERNs classification model is designed to
perform efficient face recognition, in which bit cor-
relations are elaborately approximated with a ran-
dom permutation technique. Without incurring ad-
ditional storage cost, multiple random permutations
are then employed to train a series of classifiers
for achieving better discrimination power. In ad-
dition, we introduce a sequential forward floating
search (SFFS) algorithm to perform model selec-
tion, resulting in further performance improvement.
Extensive experimental evaluations and compara-
tive studies clearly demonstrate that the proposed
Bayesian Hashing approach outperforms other peer
methods in both accuracy and speed. We achieve
state-of-the-art results on well-known face recogni-
tion benchmarks using compact binary codes with
significantly reduced computational overload and
storage cost.

1 Introduction
For image-based visual recognition tasks, feature represen-
tations are often in very high dimensions. Many exist-
ing works have demonstrated that the high-dimensional fea-
tures can yield better accuracies [Jia et al., 2012] than the
lower dimensional ones. Face recognition is one of the
typical tasks with this phenomenon [Barkan et al., 2013;
Chen et al., 2013]. To reduce the cost of both storage and
computation, different feature compression (selection, filter-
ing, projection, etc.) techniques have been proposed. This
paper takes face recognition as the use-case to study the fea-
ture compression problem.

Face recognition has received significant attentions in the
past several decades, and it has been applied in a wide range
of applications [Zhao et al., 2003; Li and Jain, 2011]. To

stimulate research in this area, several real-world benchmarks
have recently been created with challenging uncontrolled face
images. For instance, Labeled Face in the Wild (LFW) and
Face Recognition Grand Challenges (FRGC) have been the
popular testbeds for face recognition.

Among all the face recognition techniques developed in
recent years, there are roughly two major categories of ap-
proaches, i.e., low-level representation design and learning-
based methods. The former aims at designing robust hand-
crafted feature representations, such as Gabor [Wiskott et al.,
1997; Liu, 2006], LBP [Ahonen et al., 2006], HoG [Miko-
lajczyk and Schmid, 2005], etc. The latter leverages mod-
ern machine learning techniques in the recognition process.
For instance, some methods attempt to learn more discrim-
inative features from the low-level representations or raw
images. Representative techniques include subspace based
methods [Turk and Pentland, 1991; Belhumeur et al., 1997;
He et al., 2005] and mid-level representation (a.k.a. at-
tributes) learning [Kumar et al., 2009; Wright et al., 2009].
Other popular methods build advanced learning models with
improved discriminative power. The learning models can
be distance metrics [Guillaumin et al., 2009; Kostinger et
al., 2012; Nguyen and Bai, 2010], classifiers [Heisele and
et al, 2001] and Boosting [Guo and Zhang, 2001]. In ad-
dition, some recent works rely on deep learning to simul-
taneously perform feature learning and model training in a
unified framework [Huang et al., 2012; Sun et al., 2013;
Taigman et al., 2014; Sun et al., 2014].

In most existing approaches, people tend to employ high-
dimensional feature representations or over-complete feature
sets since they often have better discriminative ability and
can yield higher recognition accuracies [Su et al., 2009;
Huang et al., 2011; Chen et al., 2013; Barkan et al., 2013].
However, such high-dimensional face features demand addi-
tional storage cost and computational time for training and
prediction. To alleviate this issue, several works suggest
to learn low-rank representations from the high-dimensional
features [Li et al., 2014].

Rather than performing the low-rank matrix recovery, in
this paper, we present an efficient way to embed high-
dimensional features into a more compact Hamming space
for face recognition. In particular, we propose a novel
Bayesian framework to encode face features into compact bi-
nary codes that require significantly reduced computation and
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storage cost. After that, we develop a boosted FERNs based
model with a random permutation technique to further exploit
bit-level relationships among different binary codes. Finally,
we perform sequential forward floating search (SFFS) to se-
lect models that lead to high accuracy for face recognition.
Different from most existing face recognition techniques that
use continuous feature representation, we utilize the pro-
posed Bayesian Hashing framework to extract compact bi-
nary codes that can still maintain state-of-the-art recognition
performance. We summarize the main contributions below:

(1) We propose a novel Bayesian optimal Hamming embed-
ding method, namely Bayesian Hashing, which can ef-
ficiently encode floating point features into compact bi-
nary codes.

(2) We build boosted FERNs classification models on bit-
streams and exploit bit-level relationships with random
permutation technique. Further performance improve-
ment could be obtained by sequential model selection.
We show that such a framework performs much better
than other classifiers like the SVM for binary codes.

(3) We conduct extensive experiments on two popular face
benchmark datasets, i.e., the FRGC and the LFW. The
results show that the proposed method outperforms other
competing methods in both accuracy and speed.

This paper is organized as follows. We discuss related
works in Section 2 and introduce the proposed Bayesian
Hashing in Section 3. In Section 4, we discuss experimen-
tal settings and results. Conclusions are drawn in Section 5.

2 Related Works
We divide related works into two categories, namely feature
projection and metric learning and supervised hashing.

2.1 Feature Projection and Metric Learning
High-dimensional feature learning has been extensively stud-
ied. For example, subspace methods are considered as one
of the first choices to reduce redundancy of high-dimensional
features. If we project a d-dimensional raw feature into p-
dimensional discriminant subspace, the projection matrix will
be of the size d×p. Usually, the original dimension d of
the face features is very high, e.g., the popular Gabor fea-
tures being with tens of thousands of dimensions [Liu, 2006;
Tan and Triggs, 2010]. In some over-complete feature learn-
ing algorithms like [Huang et al., 2011; Barkan et al., 2013;
Chen et al., 2013], the value of d could be more than sev-
eral hundreds of thousands. Note that learning such a projec-
tion matrix could be very costly for high-dimensional cases.
To address the scalability issue, researchers employed various
techniques, including the divide-and-conquer strategy [Su et
al., 2009], sparse projection matrix learning with `1 regular-
ization [2013], and low-rank representations learning [Li et
al., 2014], where promising performance has been achieved
with reduced cost in either computation or storage.

Another closely related topic is metric learning, which
aims to learn a metric that maximally separates different
subject classes. Given features of two face images vi and
vj , the distance metric is often defined in a quadric form

d(vi,vj) = (vi−vj)
TM(vi−vj). The metric M ∈ Rd×d is

a symmetric positive definite matrix that can be decomposed
as M = ATA with A being a linear transformation matrix.
The learned distance function d(vi,vj) can be incorporated
into objectives like the logistic discriminant function [Guil-
laumin et al., 2009], the Cosine function [Nguyen and Bai,
2010], etc. In [Huang et al., 2011], sparse block diago-
nal constraints are imposed on the metric matrix M for fast
training. In [Parkhi et al., 2014], the authors proposed a bi-
nary representation with metric learning to reduce the dimen-
sionality of high-dimensional Fisher vector (FV) features. In
these approaches, however, the metric learning process is of-
ten very time consuming for high-dimensional data. In this
paper, we propose to use a fast Bayesian Hashing method to
encode the original high-dimensional face features to signifi-
cantly reduce the computation and storage costs.

2.2 Supervised Hashing
The objective of hashing techniques is to map raw features
to compact binary codes, where the similarity in the origi-
nal feature space can be preserved in the binary code space,
namely Hamming space. Supervised hashing techniques have
attracted increasing attentions in recent years since the goal
is to design hash functions that can preserve semantic sim-
ilarity in the Hamming space. For example, LDA-Hash
[Strecha et al., 2012] maximizes the difference between label-
same/label-different pairs in the linear discriminative projec-
tion space. Supervised Hash with Kernels (KSH) [Liu et al.,
2012] applies kernelization to formulate hash functions and
minimizes the loss function over hash codes. However, the
kernel computation is very time consuming in both training
and testing. CNN Hash [Xia et al., 2014] simultaneously
learns the hash functions as well as feature representations.
Semantic correlation maximization Hash (SCM) [Zhang and
Li, 2014] uses supervised multimodal hashing for large scale
data modeling. Note that most of the existing supervised
hashing techniques attempt to preserve semantic similarity in
the final Hamming space. The proposed Bayesian Hashing
method directly aims at minimizing the Bayes error of the
classification problem to generate compact hash codes.

Additionally, a method called BayesLSH was proposed
in [Satuluri and Parthasarathy, 2012]. Although the name is
similar, this work is fundamentally different from ours as it
only utilizes the Bayes theorem to estimate the similarity be-
tween two existing hash codes.

3 Bayesian Hashing
In order to speed up face recognition using the high-
dimensional feature representations, we aim at learning a
compact representation from the original features without sig-
nificant loss of recognition performance. Briefly, we consider
the Bayes error as an objective function to find the optimal
Hamming embedding. Given the learned hash codes, we fur-
ther employ the boosted FERNs to perform the classification
process. The proposed approach consists of the following
three key components:

(1) Bayesian Hashing: We obtain an optimal Hamming em-
bedding by minimizing the Bayes error. To reduce the
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computational cost, we use face patches to generate hash
codes, as discussed in Sec. 3.1.

(2) Boosted FERNs based classifiers: We model hash bit-
stream with boosted FERNs classifiers. Details are dis-
cussed in Sec. 3.2.

(3) Bit permutation: To exploit the relationships among dif-
ferent patches, we introduce a bit-stream permutation
technique, which leads to multiple random FERNs mod-
els. Then the sequential forward floating search is ap-
plied to select a few good permutation models, as dis-
cussed in Sec. 3.3.

For the raw face features, We use Gradient location-
orientation histogram (GLOH) in our implementation [Miko-
lajczyk and Schmid, 2005]. In particular, given the face im-
ages with some landmark points, we extract n patches around
landmarks with different scales. In addition, we further make
a mirror of each face image and extract another n more
patches. Thus, we obtain a total of K = 2n patches, each
having 17 block segments with a 8 dimensional histogram-
style feature. Finally, we represent each patch with a d0=136
dimensional feature vector.

We use a pair-wise (not limited to) representation for face
recognition as suggested in [Pinto and Cox, 2011]. Given a
pair of face images vi and vj ∈ Rd (d=K*d0), let xij be the
pair representation which is element-wise absolute-difference
xij = (‖vi1 − vj1‖p, ..., ‖vid − vjd‖p). We then define y =
1 if vi and vj are from the same subject, and y = −1 oth-
erwise. Thus, we obtain a positive sample set P from the
same-subject pairs, and a negative setN from the other pairs.

3.1 Bayesian Hashing: Formulation
Assuming that both P and N follow normal distribution,
i.e., P (x|y = 1) = N(x|µp,Σp) and P (x|y = −1) =
N(x|µn,Σn), the log-ratio discriminant function is

G(x) = ln
P (x, y = 1)

P (x, y = −1) = −(x− µp)
TΣ−1

p (x− µp)

+ (x− µn)TΣ−1
n (x− µn) + 1 · b,

(1)

where b is the bias parameter for the prior 1.
The Bayesian Hashing seeks a set of hash functions ŷ =

h(x; b) by minimizing Bayes error on training set,

L(b) =
∫
x∈P

P (ŷ 6= 1|x)dx+

∫
x∈N

P (ŷ 6= −1|x)dx. (2)

We will start from the simplest case with only 1-dimensional
feature and then extend to multi-dimensional settings.

1-dimensional case
In this case, we have P (x|y = 1) = N(x|µp, σp) and P (x|y =
−1) = N(x|µn, σn). Then Eq (1) can be rewritten as

G(x) = −(x− µp)2/σ2
p + (x− µn)2/σ2

n + b (3)

1The Bayesian Hashing is not limited to univariate discriminant
function. We may easily extend our framework to bi-variables (pair
inputs) form G(x1,x2), and obtain the discriminant function as in
[Kostinger et al., 2012] or [Chen et al., 2012]. Due to space lim-
itation, we will not describe the deduction of hash function for bi-
variable discriminant function in this paper.

Figure 1: Illustration of hash function h(x) in the 1-dimensional
case. The objective is to minimize the Bayes error, where the sample
x will be assigned to class y=-1 in this example.

Assuming σp = σn = σa, we have the hash function for
1-dimensional case as

h(x; b) = sign{(x− µp)2 − (x− µn)2 + b} (4)

In practice, we obtain b by applying a line search algorithm
(like golden section search) to minimize the cost in Eq (2).
Figure 1 illustrates how the hash function h(x; b) works in
the 1-dimensional case.

d-dimensional case
For the d-dimensional case with d>1, we follow the two-
stage procedure like many Hamming embedding algorithms
[Strecha et al., 2012]. At the first stage, we perform a de-
correlation subspace projection. There are many different cri-
teria which could be used for this objective. This paper adopts
the Fisher criterion to maximize the separation between P
and N by the ratio of variances on P and N ,

S =
(w · (µp − µn))2

wT (Σp + Σn)w
.

With Lagrange multipliers, this gives the projection Σ−1,
where Σ = Σp + Σn. Observing that Σ is a symmetric
positive semi-definite matrix, it has an SVD decomposition
Σ−1 = (USUT )−1 = (UTS−

1
2 )(S−

1
2U) = ATA, where

A = S−
1
2U . Replacing Σp and Σn with ATA, Eq (1) can be

simplified to

G(x) =− (x′ − µ′p)T (x′ − µ′p)

+ (x′ − µ′n)T (x′ − µ′n) + 1 · b,
(5)

where x′ and µ′ are all in the projection space (i.e., x′ =
Ax,µ′ = Aµ). At the second stage, we derive a set of hash
functions hi(x′i; bi) for each element of x′, similar to Eq (4).

Different from the two-stage procedures in [Strecha et al.,
2012], our objective is to minimize the Bayes error in Eq (2)
to train supervised hash functions in Eq (4). To the best of our
knowledge, we are the first to employ Bayes error in learning
a Hamming embedding. Notice that the full feature dimen-
sion d of the images is very high. Instead of applying sub-
space projection on the whole d dimensional feature space,
we perform subspace projection for each face patch with a
relatively lower feature dimension.
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Figure 2: The framework of the boosted FERNs classification
model. Each column indicates one bit-stream permutation, which
corresponds to one boosted FERNs classifier. Each circle is one
FERN byte with the number of bytes T =M in this example.

3.2 Boosted FERNs
Given a high-dimensional feature input x, Bayesian Hashing
will generate a bit sequence f = (f1, · · · , fD), where fi ∈
{0, 1}. We then model the bit stream with a random boosted
FERNs framework [Ozuysal et al., 2010]. Figure 2 shows our
configuration of the boosted random FERNs.

Generally, given bit-sequence f , we partition them into M
groups of size S = D

M , obtaining a set of feature groups
F = (F1, · · · , FM ). Each group Fi is called a FERN,
and is modeled with a Naive Bayesian classifier P (Fi|y).
Then the joint probability for all FERNs is computed by
P (F |y) =

∏M
i=1 P (Fi|y), assuming that all groups are in-

dependent. In our implementation, we group every 8-bit
(S = 8) together to one byte F . In addition, to reduce possi-
ble redundancy among different bytes, we adopt the Boosted
framework. We take each FERN as a weak classifier, and
train a GentleBoost, a variant of AdaBoost classifiers, to en-
semble different FERN bytes. Table 1 summarizes the train-
ing algorithm of the boosted FERNs.

During the training procedure, we restrict that each FERN
byte can be chosen only once to avoid redundancy. Finally,
we can obtain a decision function for recognition as

H(F ) =
∑T

i=1
{P (Fi, y = 1)− P (Fi, y = −1)}, (6)

where T ≤M is the number of bytes used/picked. This deci-

Table 1: Boosted FERNs training algorithm using GentleBoost.

Input: Training set: {(F ki , yi)}Ni=1, k = 1 : M , where N is the
number of samples and M is the number of FERN bytes. F k is
k-th FERN byte.
Initialize: Iteration number T . t = 0. Initialize weight for posi-
tive samples and negative samples.

(1) w+
1,i = 1

N+
for those yi=1;

(2) w−1,i = 1
N−

for those yi= -1.

Step 1: For each byte F k, build Naive Bayesian probability look-
up table P (F k|y);
Step 2: Pick the best byte Fσ(t) according to the Bayes error on
the training set, and define decision function as

ht(F
σ(t)) = P (Fσ(t), y = 1)− P (Fσ(t), y = −1).

Note, here we restrict that each byte can be taken only once.
Step 3: Update weight wt,i = wt−1,i · exp[−yiht(Fσ(t)i )]; and
normalize the weight so that

∑
i w

+
t,i =1 and

∑
i w
−
t,i =1;

Step 4: t = t+1. If t = T , break; else go to Step 1.
Output: Strong classifierHT (F ) =

∑T
t=1 ht(F

σ(t)).

sion function is in fact a summation of a set of look-up-tables
(LUTs), which makes the prediction very efficient. In addi-
tion, these LUTs can be further quantized into 8-bit char type
so that the model storage can be further reduced.

3.3 Bit Permutation and Model Selection
As discussed in Sec. 3.1, with high dimensional raw fea-
tures, it is inefficient to perform Hamming embedding on the
whole feature space since the projection procedure will be
fairly costly. To address this issue, we conduct patch-level
Bayesian Hashing. In order to exploit possible relationships
between different patches, we introduce a bit-stream permu-
tation technique. As illustrated in Figure 2, a total of G per-
mutations are generated. After performing permutation, bits
in the same byte could come from different patches. Given
the original hash code f , the g-th random permutation is de-
fined as fg = {fδ(g,1) , · · · , fδ(g,D)

}, where δ(, ) denotes the
indices after permutation.

For a set of bit-stream permutations, each permutation δg
will produce a boosted FERNs model H(Fδg ). Intuitively,
more permutations will produce better discrimination power
to gain more performance improvement. However, this also
incurs possible redundancy and additional cost. By intro-
ducing the Sequential Forward Floating Search (SFFS), we
are able to select an optimal set of permutation models to
achieve improved performance without additional overhead.
Note that the random permutation will not increase the stor-
age significantly since the Hamming embedding is already
fixed. Table 2 shows the details of the SFFS algorithm.

4 Experiments
4.1 Datasets and Experimental Settings
FRGC: The FRGC version-2 [Phillips et al., 2005] was de-
signed to be a comprehensive benchmark for face recognition.
We focus on experiment-4 (known as FRGC-204), which
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Table 3: Comparison with Product Quantization and Supervised Hashing with Kernels on FRGC. Our method is consistently better.

Methods TPR@FPR=0.1% Training Time (Seconds) Testing Time (Seconds) Memory (MB)
PQ [Jégou et al., 2011] + Boosted FERNs 89.50% 20915.8 3624.2 57.4
KSH [Liu et al., 2012] + Boosted FERNs 59.20% 433569.6 683.6 73.2

Bayesian Hashing + Boosted FERNs 90.35% 3873.3 213.9 34.2

Table 2: SFFS algorithm for permutation selection.

Input: Random permutation feature grouping set F = {Fg, 1 ≤
g ≤ G}. J(Fk) measures classification accuracy based on per-
mutation set Fk.
Initialize: F0 = ∅, k = 0, preset permutation number GS .
Step 1: Inclusion

- Find the best permutation F+ = arg max
F∈F\Fk

J(Fk ∪ F ),

where F\Fk is the set F excludes subset Fk;

- Fk+1 = Fk ∪ F+; k = k + 1;

Step 2: Conditional exclusion

- Find the worst permutation F− = arg max
F∈Fk

J(Fk − F );

- If J(Fk −F−) > J(Fk−1), then Fk−1 = Fk −F−, k =
k − 1, go to Step 2; else go to Step 3.

Step 3: If k ≥ GS , break; else go to Step 1.
Output: Good permutation grouping subset Fk.

contains 12,776 training faces, 16,028 target face images and
8,014 query faces. The target face images are taken under
controlled environment, while query faces are taken under un-
controlled environment. This makes the FRGC-204 the most
challenging task in the FRGC benchmark. The dataset pro-
vides manual annotations for 4 landmarks (eye centers, nose
tip and mouth center). Each face is normalized to 128×128
according to these landmarks. We extract n=240 patches
from the normalized faces according to the landmark posi-
tions with different patch sizes. A mirror image is generated
for each normalized face and another n=240 patches can be
extracted. Therefore, there are totally 480 GLOH patches,
and each patch is described by a 136-dimensional feature.

Following the traditions on this dataset, we report the
true positive rate at a fixed false positive rate of 0.1%
(TPR@FPR=0.1%). In addition to the single-point measure,
Receiver Operating Characteristic (ROC) curves are adopted
for some of the evaluated approaches.
LFW: The popular LFW dataset consists of 13,233 images of
5,749 individuals, and all the images are collected from the
Internet. We adopt the LFW-a (the aligned version of LFW),
and similar settings are adopted to for data preprocessing fol-
lowing the previous works on this dataset.

There are several evaluation protocols for LFW. We con-
duct experiments strictly following the unrestricted with
label-free outside data protocol. The evaluation dataset is di-
vided into 10 subsets to form a 10-fold cross-validation. In
each trail, we use nine subsets for training and one for test-
ing. We report the mean Equal Error Rate (EER). ROC curves
are also plotted.

4.2 Results and Discussions
We conduct several experiments to analyze the impacts from
different components of the proposed approach.
Bayesian Hashing: We first evaluate our Bayesian Hashing
and compare with two alternative hashing methods: Prod-
uct Quantization (PQ) [Jégou et al., 2011] and Supervised
Hashing with Kernels (KSH) [Liu et al., 2012]. The num-
ber of bytes for PQ is the same as that of Bayesian Hashing
(8,160). For KSH, because the training process is too ex-
pensive, we only manage to train 4,800 hash functions (600
bytes). Table 3 summarizes the results on FRGC and Figure
3(c) shows the corresponding ROC curves. Bit-permutation is
not adopted for all the three methods. As shown in the table,
Bayesian Hashing has higher accuracy. More importantly, it
significantly reduces the computation and memory cost. Our
Bayesian Hashing still outperforms KSH with a significant
margin when only 500 bytes are used (68.40% vs. 59.20%).
For PQ, the accuracy is just slightly lower, but is over 10x
slower than our Bayesian Hashing in testing time.
Boosted FERNs classification: Next, we examine the ef-
fectiveness of the boosted FERNs and compare with SVM.
Table 4 shows the results on FRGC (the bottom five rows).
The boosted FERNs classification plays an important role in
our method. Replacing it with SVM, we only obtain 79.78%
on FRGC using the same set of binary codes. Besides, we
also train an SVM classifier on the raw floating point GLOH
features, which produces an accuracy of 93.72%. In compar-
ison, the proposed method can achieve 93.20%, while requir-
ing lower computation and memory costs.
Impact of the number of FERN bytes: We now study
the impact of the number of the selected FERN bytes. Bit-
permutation is not adopted here and will be evaluated in the
next experiment. Each GLOH block (8-dimensional; each
patch has 17 blocks) is encoded into one byte. The boost-
ing training considers the FERN bytes sequentially according
to their contributions. Figure 3(a) and 3(d) plot the perfor-
mances vs. different numbers of bytes on FRGC and LFW,
respectively.

For FRGC, the accuracy tends to be stable after 4,000
bytes, and the trend on LFW is more or less the same. It
is worth noting that the original Bayesian Hashing with 8,160
bytes can already yield a 32x compression rate of the original
high-dimensional floating point features. If only using 4,000
bytes, the feature compression ratio is more than 64x with
only 2% accuracy drop.

This experiment also indicates a very promising property
of our method that we can possibly adopt a coarse-to-fine
search strategy for large-scale applications. For instance, it
is feasible to build a first level coarse search with just the top
1,000 bytes, which can quickly narrow down the search space
for fine-grained computations with more bytes.
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Figure 3: First row: results on FRGC. Second row: results on LFW. (a) and (d) are the accuracies with different numbers of bytes (w/o bit-
permutation). (b) and (e) are results with different numbers of bit permutations. (c) and (f) are ROC curves. See texts for more explanations.

Table 4: Results of our method and SVM on FRGC, in comparison
with state-of-the-art results (the top five rows).

TPR@
Methods FPR=0.1%

Baseline, eigenface [Phillips et al., 2005] 12%
Gabor + Kernel [Liu, 2006] 76%

LTP + Gabor + Kernel [Tan and Triggs, 2010] 88.5%
Gabor + Fourier [Su et al., 2009] 89%
LPQ-fusion [Chan et al., 2012] 91.59%

GLOH floating + SVM 93.72%
Bayesian Hashing + SVM 79.78%

Bayesian Hashing + Boosted FERNs single 90.35%
Bayesian Hashing + Boosted FERNs perm-128 92.68%
Bayesian Hashing + Boosted FERNs SFFS-16 93.20%

Impact of bit permutation: We train multiple boosted
FERNs models using different random permutations. Fig-
ures 3(b) and 3(e) shows the accuracy vs. different numbers
of random permutations on FRGC and LFW, respectively. It
is clear that the accuracy grows with an increasing number
of shuffles, especially at the beginning parts of the curves
(# shuffles ≤8).

We also study the effectiveness of SFFS on both FRGC
and LFW. Given a large set of different permutation models,
we adopt SFFS to select good and complementary ones by
evaluating on a separate validation set. As shown in the Fig-
ures 3(b) and 3(e), SFFS is able to further improve the results
with only a small number of selected permutations on both
datasets.

Table 5: Performance (EER ± standard deviation) comparison with
state-of-the-art approaches on LFW.

Methods EER (%)
Combined Joint Bayes [Chen et al., 2012] 90.90±1.48

CMD+SLBP [Huang et al., 2011] 92.58±1.36
VMRS [Barkan et al., 2013] 92.05±0.45

ConvNet-RBM [Sun et al., 2013] 91.75±0.48
Fisher Vector Faces [Simonyan et al., 2013] 93.03±1.05

high-dim LBP [Chen et al., 2013] 93.18±1.07
Bayesian Hashing + Boosted FERNs single 92.50 ±0.39

Bayesian Hashing + Boosted FERNs perm-16 93.53 ±0.79
Bayesian Hashing + Boosted FERNs SFFS-8 93.70 ±0.87

4.3 Comparison with State of the Arts

In this subsection, we compare our results with several state-
of-the-art works. Table 4 and Table 5 summarize the results
on FRGC and LFW respectively, where “perm-x” indicates
x random permutations. On both datasets, we achieve very
competitive results. It even outperforms the deep learning
based approach [Sun et al., 2013], which is very appealing
as we only adopt the traditional hand-crafted GLOH features.
Notice that our method can be deployed on any type of fea-
tures, including the powerful deep learning based ones. We
expect a significant gain may be achieved by replacing GLOH
with the recently developed deeply learning features. Fig-
ure 3(f) further shows the ROC curves of our method and the
compared approaches on LFW. For FRGC, we do not have the
data needed for plotting ROC curves of the compared works.
Finally, we would like to emphasize again that our results are



obtained using binary codes that possess the nice property of
significantly lower computation and memory costs, while all
the compared works reply on the expensive floating features.

5 Conclusions
Recent advances in visual recognition tasks have shown that
high-dimensional feature representations often yield high ac-
curacies, while suffering from heavy computational overload
and expensive memory cost. In this paper, we have presented
a novel method to derive optimal Hamming embedding for
high-dimensional features, namely Bayesian Hashing, with
a focus on the challenging application of face recognition.
To achieve high recognition performance, we also designed a
boosted FERNs classification framework to handle the binary
features. In addition, a random permutation technique was
used to better exploit bit correlations and train multiple clas-
sification models, where a SFFS algorithm can be applied to
perform model selection and fusion. Extensive experiments
and comparison studies using two popular face recognition
benchmarks clearly demonstrated that the proposed method
achieved competitive performance with significantly reduced
computation and memory costs.

Although the proposed method was evaluated in the face
recognition task, the Bayesian Hashing technique is a fairly
general supervised hashing method and can be extended to
various computer vision applications, such as large scale im-
age search and object recognition. One of our future direc-
tions is to design a unified framework to learn the Hamming
embedding and train classification models simultaneously for
general computer vision tasks.
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