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Model Swin-B Swin-L SwinV2-H
Base Channel 128 192 352

Depths {2,2,18,2} {2,2,18,2} {2,2,18,2}
Params 88M 197M 658M

Pre-training
Input Size 192 192 192

Window Size 6 12 12
FLOPs 11.3G 26.0G 86.2G

Fine-tuning
Input Size 224 224 224

Window Size 7 14 14
FLOPs 15.4G 35.8G 118.1G

Table 1. Detailed architecture specifications.

1. Detailed Architectures
The detailed architecture specifications are shown in Ta-

ble 1, where an input image size of 192 × 192 is used for
pre-training and 224× 224 is used in fine-tuning.

2. The Effect of Learning Rate Schedulers
In our ablation study, we follow common practice [1, 3]

to use a cosine learning rate scheduler. In our scaling up ex-
periments, we adopt a step learning rate scheduler to reduce
experimental overheads of potentially studying the effects
of different training lengths.

In this section, we investigate the effects of different
schedulers on fine-tuning accuracy. Both schedulers adopt
10-epoch linear warm-up. For the step learning rate sched-
uler, the base learning rate is set as 8e-4, and is decayed by
a factor of 10 at 90% and 95% of the total training length.
For this comparison, we follow the default settings used in
ablation, except that the scheduler is changed. As shown
in Table 2, the step scheduler performs marginally better
than the cosine scheduler, by +0.1% using a 100-epoch pre-
training, and by +0.3% using a longer 300-epoch training
procedure.

*Equal. Zhenda, Yutong, Zhuliang are long-term interns at MSRA.

lr scheduler 100 epochs 300 epochs
cosine 82.8 83.0
step 82.9 83.3

Table 2. The effects of different learning rate schedulers.

3. Results on Downstream Tasks
In this section, we add more results on several down-

stream tasks, including iNaturalist (iNat) 2018 classifica-
tion, COCO object detection and ADE20K semantic seg-
mentation.

3.1. Detailed Settings

iNaturalist 2018 classification iNaturalist [10] 2018 is a
long-tail image classification dataset with more than 8,000
categories. It includes 437,513 training images and 24,426
validation images. We fine-tune the pre-trained models us-
ing an AdamW optimizer by 100 epochs. The fine-tuning
hyper-parameters are: a batch size of 2048, a base learn-
ing rate of 1.6e-2, a weight decay of 0.05, β1 = 0.9,
β2 = 0.999, a stochastic depth [6] ratio of 0.1, and a layer-
wise learning rate decay of 0.9. We follow the same data
augmentation strategies used in [1], including RandAug [2],
Mixup [13], Cutmix [12], label smoothing [9], and random
erasing [14].

COCO object detection A Mask-RCNN [5] framework
is adopted and all models are trained with a 3× schedule
(36 epochs). We utilize an AdamW [7] optimizer with a
learning rate of 6e-5, a weight decay of 0.05, and a batch
size of 32. Following [4], we employ a large jittering aug-
mentation (1024 × 1024 resolution, scale range [0.1, 2.0]).
The window size for Swin-B is set to 7 and that for Swin-L
and SwinV2-H models is 14.

ADE20K semantic segmentation Following [8], An
UPerNet framework [11] is used following [8]. We
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Head ImageNet iNat-2018 COCO ADE20K
Top-1 Acc Top-1 Acc mAPbox mIoU

Linear 82.8 75.2 49.9 50.0
2-layer MLP 82.8 75.0 50.1 49.9

inverse Swin-T 82.4 74.9 49.8 49.4
inverse Swin-B 82.5 75.0 49.8 49.0

Table 3. More ablation studies on prediction head designing using
iNat-2018, COCO and ADE20K.

Loss
Pred. ImageNet iNat-2018 COCO ADE20K
Resol. Top-1 Acc Top-1 Acc mAPbox mIoU

8-bin 482 82.7 75.3 50.0 49.7
256-bin 482 82.3 74.6 49.7 49.3
iGPT 482 82.4 75.0 49.6 49.1
BEiT - 82.7 75.2 50.1 48.8
ℓ1 1922 82.8 75.2 49.9 50.0

Table 4. More ablation studies on prediction targets using iNat-
2018, COCO and ADE20K.

Figure 1. AvgDist (averaged distance of masked pixels to the near-
est visible pixels) w.r.t. performance on ImageNet, iNat-2018,
COCO and ADE20K.

use an AdamW [7] optimizer using the following hyper-
parameters: a weight decay of 0.05, a batch size of 32, a
layer-wise decay rate of 0.9, and a learning rate searching
from 1e-4 and 3e-4. All models are trained for 80K iter-
ations with an input resolution of 512×512 and a window
size of 20. In inference, a multi-scale test using resolutions
that are [0.75, 0.875, 1.0, 1.125, 1.25]× of 512×2048 is
employed.

For ADE20K experiments, we initialized the segmen-
tation models using model weights after supervised fine-
tuning on ImageNet-1K, because its performance is su-
perior to using the self-supervised pre-trained weights di-
rectly.

Backbone
Sup. Ours

COCO ADE20K COCO ADE20K
mAPbox mIoU mAPbox mIoU

Swin-B 50.2 50.4 52.3 52.8
Swin-L 50.9 50.0 53.8 53.5

SwinV2-H 50.2 49.8 54.4 54.2

Table 5. Scaling experiments with Swin on COCO and ADE20K.

3.2. Ablation Studies

Table 3 and 4 ablates the designs in SimMIM on the
above additional down-stream tasks. We also copy the re-
sults of ImageNet-1K from the main body to these tables
for reference.

Table 3 indicates that a lighter head (linear, 2-layer)
is consistently better than the heavier heads (e.g. inverse
Swin-T) on most tasks: +0.4% on ImageNet-1K, +0.3%
on iNat-2018, and +0.6 on ADE20K. Table 4 suggests that
our presented regression based prediction target (ℓ1) could
achieve on par or better performance than the well designed
classification based ones.

We also use these additional down-stream tasks to ver-
ify different masking strategies, as shown in Figure 1. It
turns out that the observations in Figure 3 of the main pa-
per also hold: 1) the AvgDist measure is a good indicator
for the learning effectiveness of masked image modeling;
2) an AvgDist of 15 is empirically good for masked image
modeling.

3.3. Scaling Experiments

Table 5 shows the scaling performance using COCO ob-
ject detection and ADE20K semantic segmentation. On
Swin-B, Swin-L, and SwinV2-H, SimMIM achieves +2.1
/ +2.9 / +4.2 mAPbox and +2.4 / +3.5 / +4.4 mIoU higher
accuracy than its supervised counterparts, respectively. It
indicates the broad effectiveness of the SimMIM approach.
It also suggests that larger models benefit more from this
approach.

4. More Results on Channel-wise Bin Color
Discretization

Table 6 shows more results of using channel-wise bin
color discretization as the prediction target, by varying bin
numbers and prediction resolutions. We notice that the best
accuracy for different bin numbers are achieved at different
prediction resolutions: the 2-bin and 4-bin targets reach the
best accuracy at a resolution of 1922, and all other bin num-
bers reach the best accuracy at a low prediction resolution
of 62. These results imply a moderately fine-grained target
is encouraged for this classification based approach.



Pred. Resolution
Bin Num. (Top-1 acc %)

2 4 8 16 32 256
62 82.5 82.7 82.8 82.9 82.8 82.4
482 82.5 82.8 82.7 82.6 82.5 82.3
1922 82.7 82.9 82.7 82.7 N/A N/A

Table 6. More results of using channel-wise bin color discretiza-
tion as the prediction target, by varying bin numbers and prediction
resolutions. Swin-B and 100-epoch pre-training are used.

5. SimMIM with ConvNets

With the remarkable performance of SimMIM on Vision
Transformers, we want to verify its effectiveness on versa-
tile architectures. Here we adopt ResNet-50×4 as the base
architecture. The overall training setup remains the same
as that of Swin-Base. We use masked tokens to replace the
original features after the stem of a 3 × 3 convolution of
stride = 2 followed by a 2×2 max-pooling operator.

On ResNet-50×4, SimMIM achieves 81.6% top-1 accu-
racy on ImageNet-1K validation set using 300-epoch pre-
training and 100-epoch fine-tuning, outperforming the su-
pervised counterpart by +0.9% (vs. 80.7%). This indicates
the generality of SimMIM.
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