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Abstract. Human action recognition in videos is a challenging prob-
lem with wide applications. State-of-the-art approaches often adopt the
popular bag-of-features representation based on isolated local patches or
temporal patch trajectories, where motion patterns like object relation-
ships are mostly discarded. This paper proposes a simple representation
specifically aimed at the modeling of such motion relationships. We adopt
global and local reference points to characterize motion information, so
that the final representation can be robust to camera movement. Our ap-
proach operates on top of visual codewords derived from local patch tra-
jectories, and therefore does not require accurate foreground-background
separation, which is typically a necessary step to model object relation-
ships. Through an extensive experimental evaluation, we show that the
proposed representation offers very competitive performance on challeng-
ing benchmark datasets, and combining it with the bag-of-features rep-
resentation leads to substantial improvement. On Hollywood2, Olympic
Sports, and HMDB51 datasets, we obtain 59.5%, 80.6% and 40.7% re-
spectively, which are the best reported results to date.

1 Introduction

The recognition of human actions in videos is a topic of active research in com-
puter vision. Significant progress has been made in recent years, particularly
with the invention of local invariant features and the bag-of-features framework.
For example, currently a common solution that shows state-of-the-art accuracy
on popular benchmarks is to employ the bag-of-features representation on top
of spatial-temporal interest points (STIP) [1, 2] or the temporal trajectories of
frame-level local patches (e.g., [3]).

However, the typical bag-of-features approach does not capture the motion
relationships among objects and the background scene. We argue that such mo-
tion patterns are important and thus should be incorporated into a recognition
system, especially when the target videos are captured under unconstrained envi-
ronment with severe camera motion. This paper proposes an approach to model
the motion relationships among moving objects and the background. In particu-
lar, we introduce two kinds of reference points to characterize complex motions
in the unconstrained videos, in order to alleviate the effect incurred by camera
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Fig. 1. (a) A video frame of a kissing action. (b) Local patch trajectories, with the
largest trajectory cluster shown in green. (c) Amended trajectories by using the mean
motion of the green cluster as a global reference point; See details in Section 4.1. (d)
The original patch trajectories, with a trajectory on a person’s head shown in red
(circled). (e) Amended trajectories by using the motion of the red trajectory as a local
reference point; The relative motion patterns w.r.t. the red trajectory (as visualized
in (e)) are quantized into a pairwise trajectory-codeword representation; See details in
Section 4.2. This figure is best viewed in color.

movement. Figure 1 illustrates our proposed approach. Tracking of local frame
patches is firstly performed to capture the motion of the local patches. With
the trajectories, we use a simple clustering method to identify the dominant
motion of the scene, which is used as a global motion reference point to cali-
brate the motion of each trajectory. In addition, to capture the relationships of
moving objects, we treat each trajectory as a local motion reference point for
motion characterization, which leads to a rich representation that encapsulates
trajectory descriptors and pairwise relationships. Specifically, the trajectory re-
lationships are encoded by trajectory codeword pairs in the final representation.
Since each trajectory codeword represents a unique (moving) visual pattern (e.g.,
a part of an object), the motion among objects/background can be captured in
this representation. With the local reference points, the resulted representation
is naturally robust to camera motion as it only counts the relative motion be-
tween trajectories. Although simple in its form, our approach holds the following
advantages.

First, it has been realized that motion patterns, particularly the interaction
of moving objects, are critical for recognizing human actions (e.g., the proxim-
ity changes between two people in action “kissing”), and the modeling of such
motion interactions in unconstrained videos is not easy due to camera motion.
Two intuitive ways to cancel the camera motion are to perform foreground-
background separation or video stabilization, which are still difficult research
problems, however. Therefore using trajectory-based pairwise relative motion is
a desirable solution to uncover the real object movements in videos.
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On the other hand, we notice that there have been several works exploring
pairwise relationships of local features, where generally only one type of rela-
tionship such as co-occurrence or proximity was modeled, using methods like
the Markov process. In contrast, our approach explicitly integrates the descrip-
tors of patch trajectories as well as their relative spatial location and motion
pattern. Both the identification of the reference points and the generation of
the final representation are very easy to implement. Moreover, we show that the
proposed motion representation works well with efficient classifiers, producing
very competitive action recognition accuracy on several challenging benchmarks.

The rest of this paper is structured as follows. Section 2 discusses related
works. Section 3 briefly introduces the tracking of local patches, which is the
basis of our representation. Section 4 elaborates the proposed approach and
Section 5 presents extensive experimental validations. Finally, we conclude in
Section 6.

2 Related Works

Local features, coupled with the bag-of-features framework, are the most popular
way to represent images [4, 5] and videos [2, 6]. Most of the recent works on
video representation belong to two categories. The first category extracts/learns
spatial-temporal local features where many efforts have been devoted to the
design of good detectors/descriptors [1, 7–11] or feature learning algorithms [12–
14]. Instead of directly using the spatial-temporal local features in the bag-of-
features representation, the other category performs temporal tracking of local
patches and then computes features on top of the patch trajectories [15–20, 3]. In
this section we focus our discussion on the trajectory-based approaches, which
are more related to this work. Readers are referred to [21, 22] for comprehensive
surveys of action recognition techniques.

In [15], Uemura et al. [15] extracted trajectories of SIFT patches with the
KLT tracker [23]. Mean-Shift based frame segmentation was used to estimate
dominate plane in the scene, which was used for motion compensation. Messing
et al. [16] computed velocity histories of the KLT-based trajectories for action
recognition. The work of [20] also adopted the KLT tracker, and proposed rep-
resentations to model inter-trajectory proximity. Wang et al. [17] modeled the
motion between KLT-based keypoint trajectories, without considering trajectory
locations. Spatial and temporal context of trajectories was explored in [19] with
an elegant probabilistic formulation. In addition, Raptis and Soatto [18] pro-
posed tracklet, which emphasizes more on the local casual structures of action
elements (short trajectories), not the pairwise motion patterns. A recent work by
Wang et al. [3] generated trajectories based on dense local patches and showed
that the dense trajectories significantly outperform KLT tracking of sparse local
features (e.g., the SIFT patches) on several human action recognition bench-
marks. To cope with camera motion, they extended Dalal’s motion boundary
histogram (MBH) [24] as an effective trajectory-level descriptor. MBH encodes
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the gradients of optical flow, which are helpful for canceling constant camera
motion, but cannot capture the pairwise motion relationships.

This paper presents a new video representation that integrates trajectory
descriptors with the pairwise trajectory locations as well as motion patterns. It
not only differs from the previous inter-trajectory descriptors in its design, but
also generates competitive recognition accuracies compared to the state-of-the-
art approaches on challenging benchmarks of realistic videos. By simply using
global and local reference points to suppress the noise caused by camera motion,
we avoid the use of expensive and unreliable foreground-background separation
or video stabilization algorithms.

3 Dense Trajectories

Our proposed representation is grounded on local patch trajectories. In this
work, we adopt the dense trajectory approach by Wang et al. [3], which is briefly
introduced as follows. Note that our approach can be applied on top of any local
patch trajectories.

To compute dense trajectories, the first step is to sample local patches densely
from every frame, in 8 spatial scales with a grid step size of 5 pixels. Tracking is
then performed on the patches by median filtering in a dense optical flow field.
Specifically, a patch Pt = (xt, yt) at frame t is tracked to another patch Pt+1 in
the next frame by

Pt+1 = (xt+1, yt+1) = (xt, yt) + (F × ω)|(x̄t,ȳt), (1)

where F is the kernel of median filtering, ω = (ut, vt) denotes the optical flow
field, and (x̄t, ȳt) is the rounded position of Pt. To compute the dense optical flow,
the algorithm of [25] is adopted, which is available from the OpenCV library. A
maximum value of trajectory length is set to avoid a drifting problem that often
occurs when trajectories are long, and 15 frames were found to be a suitable
choice. Also, trajectories with sudden large displacements are removed from the
final set.

Several descriptors can be computed to encode either the shape of a trajec-
tory or the local motion and appearance within a space-time volume around the
trajectory. In [3], the shape of a trajectory is described by concatenating a set
of displacement vectors ∆Pt = (Pt+1 − Pt) = (xt+1 − xt, yt+1 − yt). In order
to make the trajectory shape (TrajShape) descriptor invariant to scale changes,
the concatenated vector is normalized by the overall magnitude of motion dis-
placements:

TrajShape =
(∆Pt, . . . ,∆Pt+L−1)∑t+L−1

i=t ∥∆Pi∥
, (2)

where L = 15 is the length of the trajectories.
The local motion and appearance around a trajectory are described by His-

tograms of Oriented Gradients (HoG) [26], Histograms of Optical Flow (HOF),
and the MBH. HOG encodes local appearance information, while HOF and MBH
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capture local motion pattern. The space-time volumes (spatial size 32×32 pixels)
around the trajectories are divided into 12 equal-sized 3D grids (spatially 2×2
grids, and temporally 3 segments). For HOG, gradient orientations are quan-
tized into 8 bins. HOF has 9 bins in total, with one more zero bin compared to
HOG. Therefore the final representation has 96 dimensions for HOG and 108
dimensions for HOF. MBH computes a histogram based on the derivatives of
optical flow separately on both horizontal and vertical components. Like HOG,
8 bins are used to quantize orientations, and since there are two motion bound-
ary maps based on derivatives along two directions, the MBH descriptors are of
96 × 2 = 192 dimensions. By using derivatives of optical flow, MBH is able to
cancel global motion and only captures local relative motion of pixels. This is
quite appealing for the analysis of realistic videos with severe camera motion,
but the pairwise motion relationships are not captured in MBH. The parameter
choices for computing these descriptors are based on an empirical study con-
ducted in [3]. All the three descriptors have been shown to be effective for action
recognition in unconstrained videos [2, 27, 6, 3].

4 Trajectory-Based Motion Modeling

This section elaborates our trajectory-based motion modeling approach for hu-
man action recognition. We first describe a method that utilizes global reference
points to cancel camera motion specifically for improving the TrajShape descrip-
tor. After that we introduce a trajectory-based motion representation which uses
each trajectory as a local reference point. This representation incorporates lo-
cation and motion relationships of the patch trajectories as well as their local
descriptors, and is not sensitive to camera motion. Between the two, the latter
representation is considered as a more important contribution. We discuss the
details of our approach in the following.

4.1 Trajectory Shape Descriptor with Global Reference Points

Uncovering the global motion pattern in complex unconstrained videos is not an
easy process. Typical solutions like foreground-background separation [15] and
video stabilization [28] are very expensive to compute. We therefore pursue a
simple solution by clustering the motion patterns of trajectories on the scene.
The dominant pattern is treated as a reference point to characterize motion, so
that the effect of global motion can be alleviated.

Given a trajectory T with start position Pt on frame t, the overall motion
displacement of the trajectory is ∆T = (Pt+L−1 −Pt) = (xt+L−1 −xt, yt+L−1 −
yt). Since the length of dense trajectories has been limited to only 15 frames
(0.5 seconds for a video of 30 fps), we do not further split it and only use
the overall displacement to represent the motion of the trajectory. The motion
pattern similarity of two trajectories is computed by S(Tu, Tv) = ||∆Tu −∆Tv||.
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Fig. 2. Trajectory clustering results. Trajectories in the top-three largest clusters are
visualized in green, light red and yellow, while the remaining ones are in white. Left.
two people kissing; Right. two people getting out of a car. This figure is best viewed
in color.

With this similarity measure1, we cluster trajectories starting within each 5-
frame window of a video, and empirically generate five trajectory clusters per
window. Since it is difficult to predict which cluster contains trajectories on
the background and which one refers to a moving object, we use the top-three
largest clusters and compute the mean motion displacement of each cluster as a
candidate dominant motion direction. We have found that this is more reliable
than using a single cluster. Figure 2 visualizes the trajectory clustering results
on two example frames, where the top-three clusters are visualized in different
colors.

Denote the mean motion displacement of a trajectory cluster C as ∆C =
(∆x̄c, ∆ȳc). The displacement of a trajectory between two nearby frames within
the corresponding 5-frame window is adjusted to ∆P ′

t = ∆Pt − ∆C/15. We
then proceed to update the displacement of all the trajectories in the next
5-frame window until the end of the video. With this compensation by the
dominant motion, the TrajShape descriptor can be updated following Equa-
tion (2): TrajShape′ = (∆P ′

t , . . . , ∆P ′
t+L−1)/

∑t+L−1
i=t ∥∆P ′

i∥, where TrajShape′

is the amended descriptor. Using the mean motion displacements of the three
largest clusters, a trajectory is now associated with a set of three TrajShape′

descriptors, each adjusted by the motion pattern of one cluster. The method of
converting sets of TrajShape′ for video representation will be introduced later
in Section 4.3.

4.2 Motion Representation with Local Reference Points

We now introduce the pairwise motion representation. Since the number of
trajectories varies across different videos, a common way to generate fixed-
dimensional video representations is to use visual codewords, which are cluster
centers of the trajectory descriptors. This is in the same spirit to the classical

1 Note that the TrajShape descriptor also can be used to generate the trajectory
clusters, but we have observed that the two dimensional displacement vectors show
similar results at a much faster speed.
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Fig. 3. An illustration of our trajectory-based motion feature representation—TrajMF.
Each trajectory pair in (a) is mapped to an entry of a codeword-based representation
(b), according to the local descriptors of the two trajectories. The motion between each
codeword pair, i.e., an entry in (b), is further described by a 16-d vector, based on the
relative motion direction and relative location of the trajectory pairs falling into that
entry. The quantization maps for generating the 16-d vector are shown in (c). See texts
for more explanations.

bag-of-features framework based on static SIFT descriptors [4]. In our represen-
tation, we also adopt visual codewords as the basic units to encode the pairwise
motion relationships. For each type of trajectory descriptor (e.g., HOF), a code-
book of n codewords is constructed by clustering a subset of the descriptors
using k-means.

Given two trajectories Tu and Tv, their relative motion (with Tv as the local
reference point) can be computed by

M(Tu, Tv) = ∆Tu −∆Tv. (3)

Note that in this representation there is no need to use the dominant motion
∆C to suppress global motion, since the pairwise relative motion is naturally
robust to camera movement. Later in the experiments we will show that the
improved trajectory shape descriptor TrajShape′ can be used in combination
with this pairwise motion representation to achieve better action recognition
performance.

Figure 3 illustrates the generation of the trajectory-based motion feature rep-
resentation, dubbed TrajMF. The motion M(Tu, Tv) between two trajectories
is quantized in a way that integrates very rich information, including trajectory
neighborhood descriptors, motion direction and magnitude, as well as the rela-
tive location of the two trajectories. The local information is encoded in TrajMF
by using the trajectory descriptor codewords. Specifically, we only consider the
overall motion between two codewords in the final representation, and all the
pairwise trajectory motion patterns are mapped to the corresponding codeword
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pairs. Because a visual codeword may generally represent a (moving) local pat-
tern of an object or a background scene, the TrajMF representation implicitly
captures object-object or object-background relationships.

The motion pattern between two codewords is quantized into a vector, ac-
cording to both the relative motion direction and the relative location of each
trajectory pair that belongs to the codeword pair. Formally, let Q(·) be the
quantization function based on motion direction and relative location (see the
quantization maps in Figure 3(c)), which returns a quantization vector with all
zeros except the bit that an input trajectory pair should be assigned to. The
motion vector of a codeword pair (wp, wq) is then defined as

f(wp, wq) =
∑

∀(Tu,Tv)→(wp,wq)

Q(M(Tu, Tv),L(Tu, Tv)) · ||M(Tu, Tv)||, (4)

where L(Tu, Tv) = (P̄Tu − P̄Tv ) = (x̄Tu − x̄Tv , ȳTu − ȳTv ) indicates the relative
location of the mean positions of two trajectories, “→” denotes the trajectory-
to-codeword mapping, and ||M(Tu, Tv)|| is the magnitude of the relative motion.
In our experiments we use four bins to quantize both the motion direction and
the relative location direction, and therefore f is 16-d. We have evaluated several
choices for the number of areas used in quantization and found 4 is suitable choice
(cf. Section 5). Concatenating f of all the codeword pairs, our final TrajMF
representation has n×n

2 × 4× 4 dimensions (n is the number of codewords).

4.3 Classification

This subsection briefly discusses the classifier choices for the augmented trajec-
tory shape descriptor and the TrajMF representation. For TrajShape′, we use the
standard bag-of-features approach to convert a set of descriptors from a video
into a fixed-dimensional vector. Following [2, 3], we construct a visual codebook
of 4,000 codewords using k-means. We quantize all the three TrajShape′ descrip-
tors of each trajectory together into a single 4,000-d histogram for each video,
which is used as the final representation. This feature is classified by the popular
χ2 kernel SVM.

The TrajMF can be applied on top of any basic trajectory descriptors. In this
work we adopt all the three well-performing descriptors used in [3]: HOG, HOF,
and MBH. For each trajectory descriptor, a separate TrajMF representation is
generated. Like many previous works that modeled pairwise feature relation-
ships, the dimension of the TrajMF is high, making non-linear classifiers like the
χ2 SVM unsuitable due to speed limitation. Existing methods of pairwise feature
modeling often adopt data mining techniques for feature selection [29, 30]. We
have experimented these techniques but found them ineffective—reducing the
dimension always results in degraded performance. We therefore seek another
solution by using fast classification techniques. The most simple option is linear
SVM, which is extremely fast, even for such high-dimensional representations.
We will also test Maji’s fast Histogram Intersection (HI) kernel SVM [31], with
which classification can be executed in logarithmic complexity to the number of
support vectors.
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Dive Dribble Hug Ride Bike

Javelin Throw

Shake Hands

Long JumpGymnastics Vault Diving Platfrom High Jump

Fig. 4. Video frames of example action classes in Hollywood2 (top), Olympic Sports
(middle) and HMDB51 (bottom) datasets.

5 Experiments

Considering the simplicity of our approach, one question that naturally arises
is how well it performs on popular benchmark datasets. We conduct exten-
sive experiments using three challenging datasets of realistic videos: Hollywood2
dataset [32], Stanford Olympic Sports dataset [33], and HMDB51 dataset [28].
Many videos in these datasets contain camera motion and their contents are
very diverse (see Figure 4).

The Hollywood2 dataset [32] contains 1,707 video clips, collected from 69
Hollywood movies. The clips are divided into a training set of 823 samples and
a test set of 884 samples. There are 12 action classes in this dataset: answering
phone, driving car, eating, fighting, getting out of car, hand shaking, hugging,
kissing, running, sitting down, sitting up, and standing up. Each class is modeled
by a one-versus-all SVM classifier. Performance is measured by average precision
(AP) for each single class and mean AP (mAP) is used to measure the overall
performance of all the classes.

The Olympic Sports dataset [33] contains 783 clips and 16 action classes
(around 50 clips per class): high jump, long jump, triple jump, pole vault, gym-
nastics vault, shot put, snatch, clean jerk, javelin throw, hammer throw, discus
throw, diving platform, diving springboard, basketball layup, bowling, and ten-
nis serve. We adopt the train/test split from Niebles et al. [33]. AP/mAP is
reported as the performance measure.

The HMDB51 dataset was recently collected by Kuehne et al. [28], containing
6,766 video clips in total. There are 51 action classes, each with at least 101
positive samples. We adopt the official setting of [28] to use three train–test
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Table 1. Performance of baselines, our representations, and their combination on Hol-
lywood2, Olympic Sports and HMDB51 datasets. The “4 combined” baseline results
(using four features TrajShape, HOG, HOF and MBH) are based on the approach of
[3], where the features are represented by the standard bag-of-features. The amended
TrajShape′ descriptor shows better performance than its original version on all the
three datasets. The combination of TrajShape′ and three TrajMF representations (“Our
4 combined”) shows better results than the baseline on Olympic Sports and HMDB51.
Moreover, the combination of our four representations with the four baseline bag-of-
features leads to very competitive results (indicated by “All combined”). To our knowl-
edge, the numbers shown in the bottom row are to-date the best reported performance
on all the three datasets.

Approach Hollywood2 Olympic Sports HMDB51

Baseline TrajShape 49.3% 59.5% 24.0%
results 4 combined [3] 58.4% 74.3% 37.7%

TrajShape′ 50.2% 59.6% 26.7%
TrajMF-HOG 39.4% 66.7% 24.3%

Our TrajMF-HOF 42.3% 56.0% 25.0%
results TrajMF-MBH 46.9% 74.6% 34.0%

Our 4 combined 55.6 % 77.6% 39.8%
All combined 59.5% 80.6% 40.7%

splits. Each split has 70 training and 30 testing clips for each class. Following
[28], we report mean classification accuracy over the three splits.

5.1 Results and Comparison

We first evaluate the performance of our proposed representations and compare
with the state-of-the-art approaches. We set the number of codewords n as 300,
and use 4 bins to quantize both the motion direction and the relative location
as shown in Figure 3. The linear kernel SVM is adopted for the three TrajMF
representations (each based on a different trajectory descriptor) and the χ2 ker-
nel SVM is used for the others. We will evaluate the number of codewords and
quantization bins in TrajMF later.

Table 1 summarizes the results on the three datasets. In addition to evalu-
ating our proposed representations, we also report the results of bag-of-features
baselines using the same dense trajectory descriptors. Following [3], in the bag-
of-features, we use a codebook of 4000 codewords for each type of trajectory
descriptor2. As shown in the table, we see that the amended trajectory shape
descriptor TrajShape′ outperforms the original TrajShape, which demonstrates
the effectiveness of using the simple clustering-based method to cancel global
motion. More importantly, the TrajMF representation shows fairly competitive
performance—combining our TrajShape′ and TrajMF representations (“Our 4

2 Source codes for generating dense trajectories and computing the basic de-
scriptors are available online (http://lear.inrialpes.fr/people/wang/dense_
trajectories). The bag-of-features is based on our own implementation.
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Table 2. Performance of different kernels. “Our 4 combined” denotes the combina-
tion of the 4 representations derived from using the motion reference points, and “All
combined” is the combination of our 4 representations and the baseline bag-of-features.

Kernels Hollywood2 Olympic Sports HMDB51

χ2 58.1% 77.7% 38.3%
Our 4 combined HI 58.6% 76.9% 37.7%

Linear 55.6% 77.6% 39.8%

χ2 60.1% 79.2% 38.8%
All combined HI 60.3% 78.9% 38.4%

Linear 59.5% 80.6% 40.7%

Table 3. Comparison with the state-of-the-art approaches. Our results are listed in
the bottom row. The performance of Laptev et al. on Olympic Sports is from [33].

Hollywood2 Olympic Sports HMDB51

Taylor et al. [12] 46.6% Laptev et al. [2] 62.0% Kuehne et al. [28]
Gilbert et al. [30] 50.9% Niebles et al. [33] 72.1% – HOG-HOF 20.4%
Ullah et al. [34] 53.2% Liu et al. [35] 74.4% – C2 22.8%
Le et al. [13] 53.3% Brendel et al. [36] 77.3%
Wang et al. [3] 58.3%

59.5% 80.6% 40.7%

combined”) generates better results than the “4 combined” baseline of [3] on
Olympic Sports and HMDB51 datasets. Here the combination is done by simply
averaging the kernels computed from different representations. In addition, we
also observe that further combining our representations with the baseline (“All
combined”) gives substantial improvements on all the three datasets. This indi-
cates that the TrajMF representations are quite complementary to the standard
bag-of-features.

Next, we compare the results of different classification kernels in Table 2,
where χ2, HI, and linear kernel SVMs are used to classify the TrajMF represen-
tations. We only list the results of the combined representations in the table due
to space limitation. The linear kernel SVM offers strong performance except for
the “Our 4 combined” approach on the Hollywood2 dataset, for which HI and
χ2 are better. For the “All combined” approach, linear kernel contributes to the
top or near-top accuracy on all the three datasets, which is quite appealing since
it is more efficient.

In Table 3, we compare our results with the state-of-the-art approaches. On
Hollywood2, we obtain 1.2% gain over [3] (linear kernel for TrajMF features; 2%
gain when using the HI kernel), which used bag-of-features on dense trajectories.
This performance gain is nontrivial considering that our result is based on the
same set of trajectories and the only added information comes through the use
of the two types of motion reference points. Compared with a recent hierarchi-
cal spatio-temporal feature learning approach [13], a significant gain of 6.2% is
achieved. On Olympic Sports, we attain better results than all the state of the
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Fig. 5. Evaluation of TrajMF parameters on Hollywood2 and Olympic Sports datasets.
(a) Codebook size. (b) Number of motion direction quantization bins. (c) Number of
relative location quantization bins.

arts, including an attribute-based action learning method [35] and a graph-based
action modeling approach [36]. Our best performance on HMDB51 almost dou-
bles the two results reported in [28], where the HOG-HOF approach is based on
the work of Laptev et al. [2] and C2 uses a biologically inspired system of Serre
et al. [37].

5.2 Evaluation of TrajMF Parameters

In this subsection, we evaluate a few parameters in generating the TrajMF rep-
resentation, including the size of the visual codebook and the number of quan-
tization bins (for both motion direction and relative location). We report per-
formance of the TrajMF-HOG representation on both Hollywood2 and Olympic
Sports datasets.

Number of Codewords. Figure 5(a) shows the results w.r.t. visual code-
book size. We use 4 quantization bins for both motion direction and relative
location. We see that the performance on both datasets is fairly stable over var-
ious codebook sizes. Using a codebook of 600 codewords, we obtain 41.2% on
Hollywood2 and 68.9% on Olympic Sports. Since the dimension of TrajMF is
quadratic to the number of codewords, the minor gain over smaller codebooks
does not justify the use of a much higher dimensional representation. Therefore
we conclude that a codebook of 200-300 codewords is preferred for TrajMF.

Number of Quantization Bins. Figure 5(b) and 5(c) plot the results
w.r.t. the number of quantization bins, respectively for motion direction and
relative location. We use 300 codewords and fix the number of relative location
quantization bins at 4 for (b) and motion direction quantization bins at 2 for
(c). 4 bins are consistently better than 2 bins on both datasets. Further using
more bins may slightly improve the results, while resulting in representations of
much higher dimensions.
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6 Conclusion

In this paper, we have introduced an approach for motion-based action model-
ing, where two kinds of motion reference points are considered to alleviate the
effect of camera movement and—more importantly—take object relationships
into account in our action representation. The object relationships are encoded
by the motion patterns among pairwise trajectory codewords, so that accurate
object boundary detection or foreground-background separation is avoided. Ex-
tensive experiments on three challenging action recognition benchmarks (Holly-
wood2, Olympic Sports and HMDB51) have shown that the proposed approach
offers very competitive results. This single approach already outperforms sev-
eral state-of-the-art methods. We also observed that it is very complementary
to the standard bag-of-features. By simply combining our representations and
the bag-of-features using kernel-level fusion, we attain to-date the best results
on all the three benchmarks. For future work, we plan to compress the TrajMF
representation and also explore this approach in other computer vision tasks.
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