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The Role of ViT Design and Training
in Robustness To Common Corruptions
Rui Tian1,2, Zuxuan Wu1,2†, Qi Dai3, Micah Goldblum4, Han Hu3, Yu-Gang Jiang1,2

Abstract—Vision transformer (ViT) variants have made rapid
advances on a variety of computer vision tasks. However, their
performance on corrupted inputs, which are inevitable in realistic
use cases due to variations in lighting and weather, has not
been explored comprehensively. In this paper, we probe the
robustness gap among ViT variants and ask how these modern
architectural developments affect performance under common
types of corruption. Through extensive and rigorous benchmark-
ing, we demonstrate that simple architectural designs such as
overlapping patch embedding and convolutional feed-forward
networks can promote the robustness of ViTs. Moreover, since
the de facto training of ViTs relies heavily on data augmentation,
exactly which augmentation strategies make ViTs more robust is
worth investigating. We survey the efficacy of previous methods
and verify that adversarial noise training is powerful. In addition,
we introduce a novel conditional method for generating dynamic
augmentation parameters conditioned on input images, which
offers state-of-the-art robustness to common corruptions.

Index Terms—Vision Transformer, Common Corruptions, Ro-
bustness.

I. INTRODUCTION

ROBUSTNESS to common corruptions has recently at-
tracted attention from the computer vision and machine

learning communities [14], [20], [21], [26], [64]. In practice,
deployment conditions rarely mirror training data perfectly.
For example, practitioners might perform inference under new
lighting or weather conditions, and noise levels increase when
vision models are deployed on systems with smaller sensors or
under suboptimal temperatures. With the emergence of bench-
marking datasets such as ImageNet-C [20] and ImageNet-
3DCC [30], the brittleness of deep neural networks when
facing real-world corruptions has been revealed.

Vision transformers (ViTs) [15] have achieved cutting-edge
performance on diverse vision tasks, but it is imperative that
we also examine the effects of these architectural improve-
ments in the presence of corruptions that are common in
real-world scenarios [1], [39], [41]. In general, studies have
revealed the superior robustness of ViTs over convolutional
neural networks (CNNs) [1], [37], [41], [43], [50] and showed
that the characteristic self-attention mechanisms of ViTs may
boost their resistance to corruption [4], [43]. However, these
works focused exclusively on vanilla ViT while overlooking
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Fig. 1. Trade-off between Top-1 accuracy on ImageNet and ImageNet-C. ⋆
indicates models applied with conditional adversarial noise training. † refers
to models with design modifications (i.e., overlapping patch embeddings and
convolutional feed-forward networks).

the behavior of versatile ViT variants, about which we obtain
intriguing findings in this study.

Specifically, we observe that varying ViT designs, which
make only small improvements to in-domain test accuracy
over vanilla ViTs, can nonetheless make a massive difference
in maintaining robustness against corruptions. In particular,
PVTv1 [27] and Swin transformer [35] demonstrate promising
improvements in in-domain performance on ImageNet [48]
but lag far behind on out-of-domain samples with corruptions
(i.e., ImageNet-C and ImageNet-3DCC). It is necessary to
discover which architectural designs for ViT variants can
offer resilience to realist corruptions. We undertake the first
such exploration of robustness gaps among ViTs by closely
examining the growing body of ViT backbones. Consequently,
we reveal that design strategies, including overlapping patch
embedding (OPE) and convolutional feed-forward networks
(FFNs), are conducive to improving ViT robustness.

In recent work, several effective data augmentation methods
have been proposed to address robustness threats to CNNs
[22], [26], [40]. In addition, heavy data augmentations, such
as Mixup [72], CutMix [70], and RandAugment [10], etc have
been ingrained in de facto ViT training routines. Therefore, it
is essential to explore how such augmentation strategies impact
the robustness of ViTs to common corruptions. Specifically,
we evaluate the effectiveness of both basic and sophisticated
augmentations that have achieved the best performance in
previous works, e.g., AugMix [22], PixMix [25], adversarial
noise training (ANT) [47], etc.

In this paper, we investigate backbone designs and aug-
mentation methods that strengthen the robustness of ViTs
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Fig. 2. Comparison between Fourier heatmaps of different architectural
designs. We visualize error rates of models on images corrupted with noise in
different frequency spectrums. The central regions of heatmaps indicate the
error rate in the low-frequency range.

towards common corruptions. Specifically, we evaluate and
analyze the robustness gap among popular ViT variants. We
conduct experiments on DeiT [55] and Swin transformer [35],
demonstrating that overlapping patch embedding, which cap-
tures more local continuity information, can effectively yield
performance gains on ImageNet-C and ImageNet-3DCC. Ad-
ditionally, incorporating depthwise convolutions into FFNs
also increases the robustness. Considering Swin-B, combining
these two architectural designs decreases the mean correction
error (mCE) on ImageNet-C by 12.68 and increases the top-
1 accuracy on ImageNet-3DCC by 4.51%. We demonstrate
the comparison between Fourier heatmaps [68] of different
designs in Fig. 2. In particular, vanilla Swin-T is susceptible to
disturbances in the high-frequency domain. However, through
minor alterations in architecture, the resilience to corruption in
the high-frequency component exhibits a remarkable increase.

In addition, we explore augmentation for ViTs, ranging from
de facto training augmentations to those that have achieved
exceptional performance in previous studies. Among them,
adversarial noise training (ANT) [47] effectively boosts the
DeiT-S top-1 accuracy on ImageNet-C from top-1 accuracy on
ImageNet-C from 57.20% to 62.74%. Moreover, we introduce
a novel conditional augmentation strategy, which build condi-
tional convolutions upon ANT. Consequently, noise parameters
can be generated dynamically based on each training sample.
Conditional ANT helps DeiT-B achieve a state-of-the-art mCE
of 40.68, enables Swin-B to achieve an accuracy of 68.39%
on ImageNet-3DCC, and achieves promising performance on
other robustness benchmarks.

In summary, our contributions are as follows: 1) We in-
vestigate the robustness gap between ViT variants as well as
benchmark the influence of different ViT designs and training
strategies over robustness towards common corruptions. 2) We
provide valuable insights that overlapping OPE and convo-
lutional FFNs strengthen the robustness of a wide range of
ViTs. 3) We argue that a one-size-fits-all augmentation strategy
is not optimal and propose a novel strategy to automatic
augmentation. We incorporate dynamic networks into ANT to
encourage a novel input-dependent augmentation technique.

II. RELATED WORK

Common corruptions and perturbations. Real-world visual
data suffer from corruption due to bad weather, blurry eye-
sight, digital distortion, camera noise, etc. However, in most
cases, advanced models perform training on datasets consisting
of clean and pristine samples. To meet practical needs, the
ImageNet-C [20] and ImageNet-3DCC [30] datasets, which
benchmark safety-critical real-world corruptions, were used to
determine the vulnerability of deep models to common cor-
ruptions. Thereafter, extensive studies have been proposed to
alleviate the performance drop amid common corruptions [5],
[22], [26], [33], [52]. DeepAugment [26] distorts images by
perturbing image-to-image networks. MoEx [33] increases
the stability of models by swapping the mean and standard
deviation of image latent features. PixMix [25] uses fractals
to create images with structural complexity. RobustMix [42]
introduces a new mixing technique by interpolating the low-
frequency components of training samples. PaCo [12] makes
novel attempts to enhance robustness by rebalancing super-
vised contrastive learning. Most prior work has focused on
improving the robustness of CNNs, but limited efforts have
been made toward improving ViTs.

The robustness of ViTs. Recently, multiple attempts have
been made to explore improved vision transformers, either
by better utilizing contextual information [18], [34], [65],
scaling the model size [13], [71] and input resolution [66],
or investigating the impact of different training methods on
model behavior [57]. Moreover, several studies reveal the
robust advantages of ViTs [1], [41], [43], suggesting that
self-attention architectures contribute to their superior gen-
eralizability over CNNs [1] aand demonstrating that ViTs
exhibit less textural bias [41]. Pinto et al. [44] investigate
the differences in robustness between state-of-the-art CNNs
and ViTs. Efforts have also been made to further enhance
the robustness of ViTs. Specific ViT architectures have been
introduced to improve robustness by redesigning transformer
blocks [39], [75] or appending discretized tokens [38]. Another
stream of work focuses on extending CNN-based methods
to ViTs. For example, Herrmann et al. [27] borrows the
idea of AdvProp [63] by employing a refined adversarial
attack on ViTs in a pyramidal way. Guo et al. [17] leverage
patch-based adversarial augmentation to achieve improved
robustness. Compared to CNNs, these approaches achieve
promising performance in relation to common corruptions,
yet they overlook the performance gap between different ViT-
based variants. Thus, in this paper, we shed light on the
impacts of architectural design and training augmentation on
the robustness of ViTs.

Learnable data augmentation. Vanilla data augmentation
strategies are controlled by hyperparameters, which are often
randomly adjusted during training. In contrast, learnable data
augmentations [11], [29], [54], [73] aim to derive the best
hyperparameters for each training sample for improved train-
ing. More specifically, AutoAugment [11] learns an augmen-
tation policy using a reinforcement learning algorithm, while
AugMix [22] augments images with stochastic and diverse
augmentation methods controlled by the Jensen-Shannon di-
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TABLE I
RESULTS OF REPRESENTATIVE VIT BACKBONES ON IMAGENET-C AND

IMAGENET-3DCC. THE LISTED MODELS ARE SORTED BY PARAMETERS IN
ASCENDING ORDER. COMPARED WITH THEIR COUNTERPARTS, MODELS

THAT HAVE INFERIOR PERFORMANCE ON ROBUSTNESS BENCHMARKS ARE
HIGHLIGHTED IN BOLD.

Model IN IN-C IN-3DC
Acc ↑ mCE↓ Acc↑

PiT-T [24] 72.84 69.11 47.98
DeiT-T [55] 72.14 71.13 47.44
PVTv1-T [60] 75.00 79.56 46.28
PVTv2-B1 [61] 78.70 62.65 53.27

DeiT-S [55] 79.83 54.60 57.60
PiT-S [24] 80.98 52.47 58.27
PVTv1-S [60] 79.79 66.89 53.94
PVTv2-B2 [61] 82.02 52.56 59.06
Swin-T [35] 81.16 61.96 55.90

PVTv1-M [60] 81.31 62.39 56.49
Swin-S [35] 83.17 54.92 59.56
PVTv1-L [60] 81.72 59.86 57.80
PiT-B [24] 82.39 48.16 61.21
PVTv2-B5 [61] 83.77 45.90 62.96
DeiT-B [55] 81.80 48.52 61.45
Swin-B [35] 83.42 54.45 59.93

vergence. TeachAugment [54] introduces a teacher network
to optimize the search space of adversarial augmentations.
Another line of work explores adversarial data augmenta-
tion. Accordingly, the augmentation parameters are crafted
online via min-max optimization. For instance, AugMax [59]
achieves a significant performance boost by learning a worst-
case combination of random augmentation. Adversarial batch
normalization (AdvBN) [53] withstands corruptions by gen-
erating the most difficult perturbations on the mean and
standard deviation of features. HAT [2] proposes enhancing
robustness by perturbing the high-frequency components of
inputs adversarially. In contrast to these approaches, we design
a sample-specific policy by means of dynamic networks, which
further strengthens the efficacy of learnable data augmentation.

Dynamic networks. In contrast to standard neural networks
whose architectures and parameters are independent of input
samples, dynamic networks adaptively activate parameters or
use different parts on a per-sample basis to increase ac-
curacy [6], [67], efficiency [45], [51] or adaptability [76].
One category of dynamic networks focuses on generating
parameters based on input samples. In particular, researchers
have harnessed convolutions with dynamic parameters [6],
[67], [74] to increase their representation capacity with high
computational efficiency and to feed selected informative fea-
tures into models [51]. While the community has extensively
designed data augmentation methods, most existing algorithms
are implemented identically across different samples. Through
the use of dynamic networks, we can generate input-dependent
dynamic augmentation parameters.

III. OVERVIEW

Vanilla ViTs have achieved remarkably high performance
due to their high capacity to model global relationships among
tokenized patches. However, the improved accuracy comes
with significantly increased training costs and obstacles to
transferring to dense downstream tasks. To reduce the training
cost and improve downstream performance, researchers have
turned to various backbone designs and training philosophies.
Although these approaches have shown increased efficacy and
efficiency, their impact on the robustness of vision transform-
ers remains unexplored. This gap in the literature motivates us
to investigate underlying architectural designs and augmenta-
tion strategies for improving the robustness of ViTs to common
corruptions. To this end, we begin by introducing the metrics
of the robustness datasets, and then we elaborate on different
architectural and augmentation strategies that can influence the
robustness of ViTs.

A. Robustness Datasets

We train and evaluate ViTs on ImageNet and test
their robustness performance on the ImageNet-C benchmark
dataset [20], which provides comprehensive common corrup-
tions in the 2D setting. We also report results on ImageNet-
3DCC [30], which includes challenging 3D common cor-
ruptions. In particular, we adopt the mean corruption error
(mCE) [20] as the metric on ImageNet-C,

mCE =
1

5 ·N
N∑
c=1

[(

5∑
s=1

Es,c)/(

5∑
s=1

EAlex
s,c )], (1)

where N = 15 denotes the total number of corruption types
and S represents the level of corruption severity. EAlex refers
to the error rate on AlexNet [32]. In addition, we follow
Zhou et al. [75] and employ the retention rate, defined as
Acc(IN-C)/Acc(IN) to measure the relative resilience of ViTs
to common corruptions. Unlike the ImageNet test split, sam-
ples in ImageNet-C are shaped in 2242 and hence are free of
resizing preprocessing. Similarly, most corruption categories
in ImageNet-3DCC require no resizing, except for corruptions
related to video-stream distortions (i.e., bit error, crf compress
and abr compress), and images are resized to 2242 before
being fed into networks during inference. In the implemen-
tations, we employ Resize in the Pytorch implementation.
For evaluation on ImageNet-A [23], ImageNet-Rendition [26]
and ImageNet-Sketch [58], we follow the common strategy
of resizing images to 2562 followed by cropping the center
region size to 2242.

IV. ARCHITECTURAL DESIGNS

Vision Transformers capture global features by virtue of
convolution-free self-attention, which is also believed to con-
tribute to better robustness [4], [43]. While a variety of ViT-
based backbones have been recently introduced to improve
recognition accuracy or efficiency, whether they are more
robust remains unknown. Therefore, we evaluate the prevailing
backbones on ImageNet-C and ImageNet-3DCC. As shown
in Tab. I, the gap between different ViT variants should not
be ignored. Notably, compared with DeiT [55] and PiT [24],
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Fig. 3. Comparison between the original patch embedding and the overlap-
ping patch embedding. Given the overlapping width k, the overlapping patch
embedding operates within k pixels around the original patch for each token.

TABLE II
PERFORMANCE OF VITS WITH DIFFERENT PATCH EMBEDDING DESIGNS.
OPE STANDS FOR OVERLAPPING PATCH EMBEDDING AND k REFERS TO

THE OVERLAPPING STEP.

Model OPE FLOPs IN IN-C Ret.
k (G) Acc↑ mCE↓ Rate↑

DeiT-S
1 4.62 80.45 52.40 73.25
2 4.64 80.40 53.10 72.60
4 4.68 79.77 52.94 73.35

Swin-T

1 4.53 81.61 57.74 67.09
2 4.55 81.59 57.54 67.36
4 4.62 81.52 56.11 68.83
6 4.73 81.32 56.88 68.21

Swin-B

1 15.49 83.42 51.60 71.47
2 15.53 83.11 51.68 71.74
4 15.62 83.25 50.97 72.30
6 15.76 83.12 50.43 72.92

PVTv1 [27] and Swin Transformer [35] exhibit acute weak-
ness on corrupted data.

Notably, the performance differences between PVTv2s and
PVTv1s on ImageNet-C and ImageNet-3DCC are consider-
able. According to Tab. I, PVTv2-B5 outperforms PVTv1-L
on ImageNet-C by 13.96 in mCE and by 5.16% in ImageNet-
3DCC Top-1 accuracy. Inspired by this encouraging improve-
ment, we start by investigating the differences between these
two backbones. On top of PVTv1s, PVTv2s incorporates two
minor modifications into the backbone architecture, including
(1) overlapping patch embedding and (2) convolutional feed-
forward networks. We hypothesize that these modifications in
designs contribute to the leap in robustness performance. To
verify their effectiveness, we apply similar modifications to
DeiT-S and Swin-T respectively.

A. Overlapping Patch Embedding

In vanilla ViTs, the encoding of an image x ∈ RC×H×W

starts with translating it into a sequence of T patches of
size p × p. These flattened patches xp ∈ RT×(p2×C) are
subsequently mapped to tokens t ∈ RT×D by a fully-
connected layer. In DeiT [55], patch embedding is instead
instantiated with a convolution whose kernel size and stride
are p. Since the stride and kernel size match, the translated
kernels are non-overlapping so that patch embedding takes in

TABLE III
PERFORMANCE OF VITS WITH DIFFERENT FEED-FORWARD DESIGNS.

WHEN CHOOSING W/O CONVOLUTIONS, MODELS ARE IDENTICAL TO THE
ORIGINAL SETTINGS. WE SET N TO 32 AND 4 FOR CONDITIONAL

DWCONV FOR DEIT-S AND SWIN-T, RESPECTIVELY.

Model FFN FLOPs IN IN-C Ret.
Design (G) Acc↑ mCE↓ Rate↑

DeiT-S
w/o Conv 4.61 79.83 54.60 71.65
DWConv 4.64 79.93 52.41 73.70

Swin-T
w/o Conv 4.51 81.16 61.96 63.57
DWConv 4.56 81.83 55.28 69.33

Swin-B
w/o Conv 15.46 83.42 54.45 68.94
DWConv 15.58 83.82 48.36 74.60

disjoint sets of pixels. In contrast to non-overlapping patch
embedding, CNNs apply convolutions on overlapping spatial
areas. Inspired by such a design, overlapping patch embed-
ding (OPE) is introduced by expanding the patch window
to the surrounding pixels of the original patch. To obtain an
unchanged number of tokens and encode an extended area
with neighboring information simultaneously, we perform a
convolution with a kernel of ((p+ 2k)× (p+ 2k)), leave the
stride size fixed to p and apply zero padding, as depicted in
Fig. 3.

In practice, with p set to 16, we conduct experiments
with k varying between 1, 2, 4 and 6 on DeiT and Swin
transformers. The results from Tab. II indicate that overlapping
patch embedding enhances robustness. Compared to a vanilla
DeiT-S with a 54.6 mCE (c.f. Tab. I), overlapping patch
embedding improves the mCE by 2.2 when k = 1. Similarly,
we observe decreases of 5.96 and 4.02 in the mCE on Swin-T
with k = 4 and Swin-B with k = 6, respectively.

B. Convolutional Feed-forward Network

Recently, researchers also couple ViT blocks with convo-
lutions either to improve the efficiency of ViTs [62], [69]
or to increase the encoding of spatial information [9], [28].
Depthwise convolution (DWConv) [7] is a particular form of
convolution that applies a single filter to each input channel
(i.e. input depth). We follow PVTv2 by adding a depthwise
convolution to each feed-forward block in ViTs.

We denote Fi as the output of i-th attention layer. Naturally,
for ViTs equipped with class token (e.g. DeiT), Fi can be
rewritten as [Fcls

i ,F img
i ] where Fcls

i represents the class token
output of i-th layer while F img

i refers to the corresponding
image token. Otherwise, for ViTs without class token (e.g.
Swin Transformer), Fi is equivalent to F img

i . Considering the
spatial dimension requirements for convolutions, we proceed
to apply convolutions to F img

i and leave Fcls
i unchanged. The

convolution is injected between the two linear layers within
the FFN and before the activation layer.

Tab. III shows that convolutional FFNs lead to a decrease of
2.19 in the mCE for DeiT-S. The mCE for Swin-T and Swin-
B decreases by 6.68 and 6.09, respectively. Swin transformers
also show an increase in clean accuracy, namely, of 0.67%
for Swin-T and 0.4% for Swin-B. Based on these results, we
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TABLE IV
PERFORMANCE OF MODELS WITH BOTH OVERLAPPING PATCH EMBEDDING (OPE.) AND CONVOLUTIONAL FFNS ON DIFFERENT ROBUSTNESS

BENCHMARKS. THE DROP OR GROWTH COMPARED WITH THE ORIGINAL DESIGN IS DISPLAYED IN BRACKETS.

Model Param FLOPs Conv OPE. IN IN-C Retention IN-3DC IN-R IN-SK
(M) (G) FFN k Acc↑ mCE↓ Rate↑ Acc↑ Acc↑ Acc↑

DeiT-S 22.4 4.7 DWC. 2 79.99 52.29 (↓2.31) 73.78 (↑2.13) 60.35 (↑1.53) 45.35 (↑3.45) 32.62 (↑3.52)

Swin-T 28.5 4.7 DWC. 4 81.98 54.10 (↓7.86) 70.41 (↑6.84) 60.00 (↑4.69) 45.92 (↑4.66) 32.48 (↑3.43)

Swin-B 88.3 15.7 DWC. 4 83.87 47.25 (↓12.68) 75.22 (↑6.55) 64.24 (↑4.54) 50.33 (↑3.78) 36.93 (↑4.51)

TABLE V
THE ABLATION STUDY OF DESIGNS IN PVTV2-B1. THE ROW INDICATING

THE ORIGINAL DESIGN IS HIGHLIGHTED IN GRAY.

OPE conv IN IN-C Ret.
FFN Acc↑ mCE↓ Rate↑

✓ 77.51 67.14 61.05
✓ 78.03 63.46 64.40

✓ ✓ 78.70 62.65 64.56

believe that adding a convolution to FFNs will result in solid
gains in robustness.

C. Combined Designs

The merits of overlapping patch embedding and inject-
ing convolutions into FFNs are their simplicity and high
efficacy. Furthermore, we experiment with DeiT and Swin
by incorporating these two designs simultaneously. As dis-
played in Tab. IV, the combined design induces further im-
provements both on ImageNet-C, ImageNet-3DCC and on
other robustness benchmarks, i.e., ImageNet-Rendition [26]
and ImageNet-Sketch [58]. Ultimately, the mCE of DeiT-S
decreases on ImageNet-C by 2.41, while that of Swin-T and
Swin-B decreases by 7.86 and 12.68, respectively. In addition,
compared to the overall parameters of the original ViTs (i.e.
22.1M for DeiT-S, 28.3M for Swin-T and 86.6M for Swin-B),
implementing overlapping patch embeddings and FFNs with
depthwise convolutions results in a relatively small increase
in parameters (i.e., approximately 0.5-2%). Moreover, adding
both OPE and convolutional FFNs to DeiT-S results in an
increase of only 1.4% in FLOPs while introducing 1.7% more
FLOPs on Swin-B. Therefore, the modifications have minimal
impacts on the computational costs while greatly boosting the
robustness to common corruptions.

Exploration on more ViTs. Regarding the extensive results
on DeiT and Swin transformer, we posit that overlapping
patch embedding and convolutional feed-forward networks are
widely effective for ViT variants. To test this prediction, we
conduct additional experiments on other ViTs. In particular,
we verify the positive impacts of these two designs on the
robustness of PVTv2. As displayed in Tab. V, removing
either overlapping patch embedding or convolutional FNNs
significantly degrades both clean-domain and robust-domain
performance, which further verifies our hypothesis above.

In addition, we can observe a similar trend for CvT [62],
a ViT variant that incorporates convolutional projection and
adopts overlapping patch embedding in the original setting.

TABLE VI
THE ABLATION STUDY OF DESIGNS IN CVT-13. THE ROW INDICATING

THE ORIGINAL DESIGN IS HIGHLIGHTED IN GRAY.

OPE conv IN IN-C Ret.
FFN Acc↑ mCE↓ Rate↑

80.00 64.99 61.46
✓ 81.40 57.24 67.64
✓ ✓ 81.20 54.79 70.25

As Tab. VI demonstrates, applying nonoverlapping patch em-
bedding to CVT-13 increases the mCE of ImageNet-C by 7.75,
while injecting convolutions into FFNs decreases the mCE by
2.45. Hence, we believe that these two minor modifications
in design can generate far-reaching improvements in the
robustness of ViTs.

V. AUGMENTATION STRATEGIES

Training of ViTs involves strong augmentations (i.e.,
Mixup [72], CutMix [70], RandAugment [10] and repeated
augmentation [3]), whereas how these augmentations impact
the robustness performance against common corruptions is
uncertain. Furthermore, numerous augmentation techniques
have been proposed and proven to be effective in improving
robustness. To boost the robustness of ViTs to common cor-
ruptions, it is natural to build them upon previous successful
strategies. To this end, we experiment with previous advanced
augmentation techniques and emphasize adversarial augmen-
tation, i.e., adversarial noise training (ANT) [47]. Furthermore,
we propose a conditional augmentation strategy in addition to
adversarial augmentation, which effectively strengthens ViTs
against common corruption.

A. Basic Augmentations

Bai et al. [1] reveal that applying basic augmentations used
for training ViTs (i.e., augmentations used in the de facto ViT
training schedules) facilitates improvements in the robustness
of CNNs. Nevertheless, how basic augmentations contribute to
the robustness of ViTs remains unclear. Thus, taking DeiT-S
and Swin-T as examples, we analyze the performance changes
in ViTs by removing each of these augmentations individually
from training. Since de facto training performs Mixup or
CutMix alternatively based on a switching probability, when
either of them is excluded from training, we apply the other
method for the training samples.

As displayed in Tab. VII, repeated augmentation and ran-
dom erasing have limited influence on the performance on
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TABLE VII
PERFORMANCE OF VITS ON IMAGENET AND IMAGENET-C WITH ONE

TYPE OF BASIC AUGMENTATION REMOVED FROM TRAINING.

Model w/o Aug. IN IN-C Ret.
Acc↑ mCE↓ Rate↑

DeiT-S

MixUp 80.20 60.01 65.62 (↓6.03)

CutMix 78.56 56.84 70.70 (↓0.95)

RandAug 79.56 57.91 68.46 (↓3.19)

Rep. Aug 80.41 54.72 71.04 (↓0.62)

Erasing 80.03 54.55 71.47 (↓0.18)

Swin-T

MixUp 81.42 66.56 58.55 (↓5.02)

CutMix 80.68 60.24 65.65 (↑2.09)

RandAug 80.86 65.08 60.78 (↓2.78)

Erasing 81.25 61.40 64.09 (↑0.52)

TABLE VIII
PERFORMANCE OF DEIT-S WITH DIFFERENT AUGMENTATION METHODS

ON IMAGENET AND IMAGENET-C. METHODS WITH THE COLUMN OF
RANDAUG TICKLED ARE IMPLEMENTED AND ASSOCIATED WITH THE

ORIGINAL RANDAUG TRAINING STRATEGY.

Method Mixup Rand IN IN-C Ret.
Aug Acc↑ mCE↓ Rate↑

ThreeAug 80.63 59.55 65.41
AugMix 80.05 56.85 69.17

PixMix
✓ ✓ 79.76 53.81 72.67

✓ 79.37 54.03 72.63

PRIME
✓ ✓ 79.26 47.76 79.13

✓ 79.76 48.51 77.72

ImageNet-C, i.e., slight changes are incurred in the retention
rate. Mixup, CutMix and RandAugment are robust to different
degrees. CutMix is essential for in-domain test accuracy,
but minimally improves the retention rate. Notably, Swin-T
with CNN-style hierarchical feature maps achieves the best
performance without implementing CutMix, which is similar
to the performance of ResNet50 [1].

B. Advanced Augmentations

Recently, versatile augmentation-based strategies have been
proposed for improving the robustness of deep neural net-
works, especially classical CNNs. However, whether the ad-
vantages of these advanced training techniques persist for ViTs
remains unexplored. To shed light on the influence of such
augmentations on ViTs’ robustness to common corruptions,
we tested DeiT-S with five augmentation methods, i.e., Three-
Augment [56], AugMix [22], PixMix [25] and PRIME [40].
Three-Augment draws inspiration from the succinct prepro-
cessing of self-supervised learning and hence consists of
only grayscale, solarization and Gaussian blur. AugMix in-
corporates simple augmentation from AutoAugment [11] with
consistency loss. PixMix enriches the input distribution by
mixing training samples with complex fractals, and PRIME
leverages the combination of max-entropy transformations in
the spectral, spatial and color domains.

Tab. VIII suggests that ThreeAug improves in-domain per-
formance on the ImageNet validation set but impedes ro-

TABLE IX
WE CONDUCT EXTENSIVE EXPERIMENTS OF ADVERSARIAL NOISE

TRAINING ON VITS. MODELS OF DEIT-S AND PIT-S ARE INITIALIZED
WITH WEIGHTS FROM OFFICIAL OPEN SOURCE. † INDICATES ADDING

OVERLAPPING PATCH EMBEDDING AND CONVOLUTIONAL FEED-FORWARD
NETWORK TO DEIT-S AND ALL EXPERIMENTS ARE CONDUCTED WITH

THE NORM OF NOISE SET TO 80.

Method IN IN-C Ret. IN-3DC
Acc↑ mCE↓ Rate↑ Acc↑

DeiT-S [55] 79.83 54.60 71.65 58.82
+ fine-tune 300 ep. 81.20 52.31 72.66 60.15
+ ANT Gaussian 80.27 48.09 77.87 62.63
+ ANT Speckle 80.35 47.82 78.08 62.55
+ Cond ANT Gaussian 80.18 47.28 78.77 62.79
+ Cond ANT Speckle 80.15 47.18 78.95 62.84

PiT-S [24] 80.98 52.47 72.71 60.64
+ ANT Gaussian 80.77 47.60 77.83 63.63
+ Cond ANT Gaussian 80.80 47.28 78.13 63.54
+ Cond ANT Speckle 80.74 46.63 78.82 64.02

DeiT-S † 79.99 52.29 73.78 60.35
+ Cond ANT Speckle 79.91 45.33 81.00 63.91

TABLE X
THE ABLATION STUDY OF APPLYING DIFFERENT NOISE AUGMENTATION
TYPES ON DEIT AND RESNET [19]. W/O NOISE REFERS TO A SUBSET OF

IMAGENET-C, WHICH CONTAINS NO NOISE-RELATED CORRUPTIONS.

Model Method IN-C w/o Noise
Acc↑ Acc↑

DeiT-S
Speckle 62.25 (↑5.05) 60.51 (↑3.46)

Speckle ANT 62.74 (↑5.54) 60.81 (↑3.76)

Speckle Cond ANT 63.28 (↑6.08) 61.02 (↑3.97)

ResNet50
Gaussian ANT 51.09 (↑11.9) 47.66 (↑5.36)

Gaussian Cond ANT 51.30 (↑12.1) 47.63 (↑5.33)

DeiT-B
Speckle ANT 66.83 (↑4.77) 65.33 (↑4.01)

Speckle Cond ANT 68.38 (↑6.32) 66.46 (↑5.14)

bustness, which is reflected by a plummet of 4.95 in mCE
on ImageNet-C. AugMix also fails to enhance resistance to
corruption. In contrast, PRIME and PixMix have positive
impacts on robustness. In particular, PRIME outperforms
ImageNet but substantially outperforms ImageNet-C. Mixup
also strongly influences robustness, facilitating a decrease of
1.25 mCE on top of PRIME. In the case of PixMix, the positive
influence introduced by Mixup is weakened, as adding Mixup
to methods integrated with mixing (e.g. PixMix and AugMix)
may lead to manifold intrusion [16].

C. Adversarial Noise Augmentation

As indicated by the experiments above, advanced augmen-
tations clearly demonstrate a trade-off between in-domain
accuracy and out-of-domain accuracy. In pursuit of a better
trade-off as well as deeper insights into a more delicate
training approach, we consider approaches focused on apply-
ing adversarial learning to achieve improved robustness, e.g.,
AugMax [59], HAT [2] and etc. In particular, Rusak et al. [47]
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TABLE XI
THE ABLATION STUDY OF REMOVING BASIC AUGMENTATIONS FROM

GAUSSIAN ANT FINE-TUNING ON DEIT-S. IN EACH RUN, WE
REMOVE ONE SPECIFIC TYPE OF AUGMENTATION.

Augmentation IN IN-C Ret.
Acc↑ mCE↓ Rate↑

Full 80.27 48.09 77.87
w/o Mixup 80.65 51.07 74.38
w/o CutMix 79.94 48.62 77.72
w/o RandAug 79.68 52.89 73.73

TABLE XII
THE ABLATION STUDY OF DIFFERENT CONVOLUTION TYPES IN

NOISE GENERATOR MODELS ON DEIT-S. N ×N OF COLUMN GEN
INDICATES THE KERNEL SIZE OF CONVOLUTIONS.

Noise Gen IN IN-C Ret.
Acc↑ mCE↓ Rate↑

Gaussian 1× 1 80.27 48.09 77.87
Gaussian 3× 3 80.52 48.18 77.52
Speckle 1× 1 80.35 47.82 78.08
Speckle 3× 3 79.80 49.25 77.20

TABLE XIII
THE ABLATION STUDY OF AUGMENTATION SEQUENCES IN

GAUSSIAN ANT FINE-TUNING USING PRE-TRAINED DEIT-S, WHERE
MIX IS THE ABBREVIATION FOR MIXUP AND CUTMIX.

Strategy IN IN-C Ret.
Acc↑ mCE↓ Rate↑

Early Mix 80.76 50.56 74.85
Full Mix 80.19 48.66 77.25
Separate Mix 80.27 48.09 77.87

TABLE XIV
THE ABLATION STUDY OF ATTACK TYPE IN ADVERSARIAL NOISE

TRAINING OF GAUSSIAN 1× 1. THE ROW INDICATING THE DEFAULT
DESIGN IS HIGHLIGHTED IN GRAY.

Attack Type IN IN-C Ret.
Acc↑ mCE↓ Rate↑

non-targeted 80.34 48.47 77.41
targeted 80.27 48.09 77.87

introduce a novel adversarial framework and make great strides
toward improving the robustness of CNNs to common corrup-
tions. Instead of performing traditional adversarial training or
learning augmentation parameters adversarially, they attempt
to tune random noise with a lightweight neural network and
then add the enhanced noise to the images. Afterward, the
models are trained against enhanced noise adversarially. The
entire framework is denoted as adversarial noise training
(ANT). Specifically, Gaussian (Eq. (2a)) noise and speckle
noise (Eq. (2b)) are generated to perturb an image x,

Σ1(x) = x+ Cp(σδ, ϵ), (2a)
Σ2(x) = x+ Cp(σδ · x, ϵ), (2b)

where σδ ∈ RC×H×W is distributed according to N (0, δ2).

The clipping function Cp confines noise to have an Lp norm
at most ϵ. Motivated by the efficacy and simplicity of ANT
for CNNs, we explore a similar strategy for ViTs (denoted fθ)
with the following optimization objective:

min
θ

max
τ

E
(x,y)∼D

E
σδ∼N (0,δ2)

[L(fθ(x+ Cp(Pτ (σδ · x), ϵ), y)],

min
θ

max
τ

E
(x,y)∼D

E
σδ∼N (0,δ2)

[L(fθ(x+ Cp(Pτ (σδ·x), ϵ), y)],

where Pτ denotes the noise generators which typically consist
of 4 1 × 1 convolution layers with residual connections.
Initially, in the inner loop, we focus on improving Pτ . The
optimization goal is to generate noise that is harmful enough
to make ViTs produce incorrect predictions. The optimization
serves as the attack phase in a similar spirit to adversarial train-
ing. Following this step, in the outer loop or defense phase, we
optimize ViTs to withstand the effects of the enhanced noise
created by the generators. This two-phase cycle is critical for
strengthening the ViTs against more challenging noisy inputs.

Adversarial noise training is effective. For simplicity, we
attack ViTs with noise produced by ANT generators and

defend against noisy data once per iteration. During the attack
process, we assign all the data noise generated by ANT,
while we use 50% noisy data together with 50% clean data
during the defense phase. We train noise generators with the
Adam optimizer and a learning rate of 8e−5 and retain all
augmentation strategies from DeiT training [55] since they
improved the performance (c.f. Tab. XI). As shown in Tab. IX,
ANT decreases the mCE of DeiT-S and a PiT-S by 6.51
and 5.87 on ImageNet-C, respectively. It also outperforms the
baseline of further fine-tuning DeiT-S on ImageNet for 300
epochs by 4.22 in mCE.

We build adversarial generators on both Gaussian and
speckle noise. The speckle noise amplified by generators is
applied to 1×1 pixel regions and hence preserves most of the
structural information in the images. As Tab. IX shows, ANT
with speckle noise yields the best performance on robustness
benchmarks. In addition, we experiment with the baseline
of randomly sampled plain speckle noise from distributions
of five different standard deviations. The results in Tab. X
demonstrate that ANT outperforms the plain noise baseline
not only on the full ImageNet-C dataset but also on corruption
types excluding noise. Therefore, adversarial noise training
enables ViTs to generalize to a wider range of distributions.

Basic augmentations are necessary. Regarding DeiT, since
we train ANT on top of the vanilla training recipe, where
basic augmentation approaches, i.e., Mixup [72], CutMix [70]
and RandAugment [10] are employed to stabilize training and
boost clean accuracy. It is necessary to explore the interplay
between additive adversarial noise and previously adopted
augmentations. The results in Tab. XI indicate that ViTs
depend strongly on basic perturbations. The absence of any
type of basic augmentation leads to a decrease in performance
on both ImageNet and ImageNet-C.

Furthermore, we demonstrate that the sequence of applying
Mixup, CutMix, and noise augmentation is also crucial. We
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TABLE XV
PERFORMANCE OF VITS ON DIFFERENT ROBUSTNESS BENCHMARKS. † INDICATES SWIN-B EQUIPPED WITH OPE AND CONVOLUTIONAL FFN. TOP-2
STATE-OF-THE-ART RESULTS ARE UNDERSCORED. DEIT-B WITH CONDITIONAL ANT ADOPTS SPECKLE NOISE WITH THE NORM SET TO 100 WHILE

SWIN-B EMPLOYS NOISE WITH A NORM OF 80. WE ADOPT OFFICIAL CHECKPOINTS OF RVT-B AND FAN-B IN EVALUATION WHILE REPORTING RESULTS
OF DISCRETE VIT AND PYRAMID VIT BY CITING FROM THEIR PAPERS.

Model IN IN-C Ret. IN-3DC IN-R IN-A IN-SK
Acc↑ mCE↓ Rate↑ Acc↑ Acc↑ Acc↑ Acc↑

Discrete ViT [38] 79.48 46.22 - - 44.77 27.19 34.59
Pyramid ViT [27] 81.71 44.99 - - 47.66 22.99 36.77
RVT-B [39] 82.60 44.80 78.47 65.18 50.48 40.89 34.79
FAN-B [75] 83.60 44.68 77.73 65.95 50.93 39.96 37.73

DeiT-B 81.80 48.52 75.87 62.68 44.66 28.15 31.96
Swin-B † 83.87 47.25 75.22 64.24 50.33 40.45 36.93
DeiT-B + cond ANT 82.35 40.68 83.04 66.44 48.63 31.76 36.00
Swin-B † + cond ANT 83.72 40.82 81.43 68.39 54.18 39.44 40.34

investigate 3 different strategies: (1) early mixing: we first
implement data normalization, followed by Mixup or CutMix,
and finally, noise is added; (2) full mixing: noise is first
applied, followed by normalization and Mixup or CutMix
along the whole batch; and (3) separate mixing: we first apply
noise followed by normalization, while Mixup or CutMix
is conducted separately with clean and noisy data. Separate
mixing offers the best results, as shown in Tab. XIII.

Following the original setting in ANT [47], we also exper-
iment with noise generators with convolutions of 3× 3 kernel
size. As displayed in Tab. XII, while the kernel size 3× 3 is
similar to the 1 × 1 kernel for Gaussian noise, speckle noise
decreases with the 3× 3 convolution kernel. Overall, speckle
noise with 1×1 kernel generators outperforms its counterparts
marginally. In addition, we ablate with the nontargeted attack
by randomly choosing one of 1000 labels as the optimization
target via de facto adversarial training. Tab. XIV demonstrates
that a targeted attack results in better robustness.

D. Conditional Adversarial Augmentation

While ANT is effective, it produces noise regardless of the
visual content of the input samples with “one-size-fits-all” pa-
rameters. Recently, there has been growing interest in dynamic
CNNs that generate sample-specific parameters conditioned on
inputs [6], [67], [74]. This development motivates us to explore
dynamic techniques in ANT for improved performance on
ViTs. We introduce input-dependent adversarial augmentations
by means of dynamic networks, which instantiate conditional
computation by dynamically generating augmentation parame-
ters individually for each input instance. Notably, improved ro-
bustness can be achieved without introducing extra parameters
for ViTs and with a moderate increase in training overheads.

Conditional ANT. We aim to generate sample-specific noise
conditioned on the input images. Thus, we apply dynamic
augmentation weights on top of ANT. To this end, we use
CondConv [67] which replaces vanilla convolution layers with
conditional convolutions in noise generators. Specifically, an
image x is mapped to a space of N expert weights by a routing

TABLE XVI
RESULTS OF TRAINING DEIT AND SWIN TRANSFORMER FROM SCRATCH

WITH CONDITIONAL SPECKLE ANT. ALL EXPERIMENTS ARE CONDUCTED
WITH THE NORM OF NOISE SET TO 80.

Model Cond IN IN-C Ret. IN-3DC
ANT Acc↑ mCE↓ Rate↑ Acc↑

DeiT-S
79.83 54.60 71.65 58.82

✓ 79.94 47.15 79.15 63.28

Swin-B† 83.87 47.25 75.22 64.24
✓ 83.64 40.02 82.17 68.69

function R : RC×H×W → RN . Accordingly, we instantiate
the routing function with

R(x) = Sigmoid(FC(GlobalAvgPool(x))). (3)

We can expand and express the routing weight as R(x) =
{w1, w2, · · · , wD}. Consequently, a customized kernel W
is generated by combining image-specific weights with N
learnable kernels.

W(X) = w1 ·K1 + · · ·+ wD ·KD. (4)

Therefore, the noise appended to each image is dynamically
tuned. In addition, we incorporate two tactics to alleviate train-
ing overhead. On the one hand, we follow Shafahi et al. [49]
to perform free adversarial training, i.e., the noise generator is
optimized based on the current minibatch and then generates
noise for the successive minibatch of data. Hence, the ViT
and the generator run backward simultaneously. Compared
with adversarial training based on the vanilla K-step PGD
attack, where the backbone model requires 2K times the feed-
forward per minibatch, we readily conduct training with only
one-pass feed-forward. On the other hand, the original ANT
involves 20% of the samples augmented by randomly drawn
previous noise generators. We employ a history generator with
a momentum update instead of loading previous checkpoints to
reduce I/O loads while remaining aligned with the experience
replay setting. With the joint strategies, the training cost is
close to the de facto cost without adversarial augmentation,
while consistent performance gains can be obtained.
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Specifically, we fine-tune ViTs via conditional ANT with
N set to 16. Our experiments suggest that this dynamic tech-
nique achieves state-of-the-art performance. As demonstrated
in Tab. IX, training DeiT-S with conditional ANT surpasses the
original ANT by 0.65% (Gaussian noise) and 0.54% (speckle
noise) in top-1 accuracy on ImageNet-C. In addition, we man-
aged to achieve markedly improved robustness performance
via from-scratch training while maintaining a similar clean
performance with de facto training. Using PiT-S, conditional
ANT with speckle noise yields a boost of 4.76% in accuracy
on ImageNet-C. In addition, by applying conditional ANT to
DeiT-S, which is equipped with an improved architecture from
our work, i.e., overlapping patch embedding and convolutional
feed-forward networks, we achieve an mCE of 45.33 on
ImageNet-C, which is 4.07 better than that of RVT-S [39].

We compare the gains achieved by conditional augmentation
between ResNet and DeiT in Tab. X with noise of the
same magnitude. When applied to ResNet50, conditional ANT
marginally surpasses ANT by 0.2% in top-1 accuracy on
ImageNet-C. In contrast, we observe that conditional ANT
helps DeiT-B improve significantly by 1.5%. We posit that
ViTs accommodate conditional augmentation well due to their
strong innate generalization capability.

State-of-the-art performance. We experiment with the
conditional augmentation strategy using DeiT-B and Swin-B.
Although a trade-off between performance on clean and cor-
rupted data is demonstrated on DeiT-S, applying conditional
ANT on DeiT-B nonetheless improves ImageNet test accuracy
by 0.55%. We owe this result to the better capacity of large
models and hypothesize that heavy augmentation may catalyze
the better performance of DeiT-B. Compared with other state-
of-the-art ViTs in Tab. XV, our models demonstrate outstand-
ing performance on a range of robustness benchmarks and are
also highly competitive on clean ImageNet recognition.

In addition, we validate the feasibility of training ViTs with
adversarial noise from scratch on both DeiT-S and Swin-B.
The results in Tab. XVI suggest that conditional ANT not
only manages to boost robustness against common corruptions
but also maintains moderate clean accuracy, outperforming the
counterparts in Tab. VIII in the trade-off between in-domain
and out-of-domain performance. Swin-B even achieves a min-
imum mCE of 40.02 and a peak accuracy of 68.89% on
ImageNet-3DCC.

Furthermore, we claim that conditional ANT can be adapted
for a wide range of differentiable augmentations containing
random variables. Specifically, the conditional generator can
be plugged in to adjust any random variable. Once differen-
tiability is satisfied, adversarial training can be performed by
optimizing the predefined conditional generator.

VI. ADDITIONAL ANALYSIS

According to the quantitative analysis of the designs and
training strategies above, ViTs demonstrate promising ro-
bustness with overlapping patch embeddings, convolutional
feed-forward networks and conditional ANT. To explore the
rationale behind these designs and strategies, we investigate
their contributions to robustness from the perspective of the
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Fig. 4. Performance of different models on low-pass-filtered input. † indicates
employing overlapping patch embedding and convolutional feed-forward
networks in DeiT.

Fourier domain and provide more detailed results on specific
corruption categories.

Fourier-domain robustness. Following Yin et al. [68], we
explore the robustness of different architectural designs by
perturbing models with noise in the Fourier domain and visu-
alizing the error rates corresponding to the Fourier spectrum
with heatmaps. While dark red indicates relatively high error
rates, dark blue denotes relatively low error rates and hence
implies better robustness in the Fourier domain. Fig. 5 shows
that Swin-T with OPE improves resilience to high-frequency
perturbations (c.f. Fig. 2) to an extent, while convolutional
FFNs greatly improve the robustness of high-frequency com-
ponents and even manage to elevate the immunity of the low-
frequency part against disturbance.

In addition, we apply low-pass filters to further analyze
the performance of the models on low-frequency components.
Specifically, we employ discrete Fourier transformation (DCT)
to perform Fourier domain filters on input images x ∈ RH×W

with a corresponding hyper-parameter r, which refers to the
radius of the filter. The low-frequency mask MLr ∈ {0, 1}
can be formulated as follows:

MLr
i,j =

{
1 if

√
((i−H/2)2 + (j −W/2)2) ≤ r

0 otherwise
.

Given the DCT function denoted as F and the inverse
discrete fourier transformation as F−1 , we can formulate the
low-pass filter PF low

r as

PF low
r = F−1(MLr ⊙F(x)). (5)

Therefore, we use PF low
r with r ranging from 20 to 60

on a subset of ImageNet validation dataset which contains
5000 samples sampled uniformly, and plot the curve of the
radius and the corresponding top-1 accuracy. As Fig. 4 shows,
the combined architecture improves the capability of model-
ing low-frequency components, hence resulting in enhanced
robustness to high-frequency perturbations. In addition, ap-
plying conditional ANT leads to a remarkable increase in
performance on the low-frequency components.

Performance for specific corruption types. Specifically, as
displayed in Tab. XVII, DeiT-S with overlapping embedding
shows superior performance against corruption in terms of
noise, brightness, JPEG compression, contrast and pixelation.
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TABLE XVII
ERROR RATES OF DEIT-S WITH DIFFERENT DESIGN SETTINGS TOWARDS 15 SPECIFIC CORRUPTION TYPES OF IMAGENET-C.

OPE FFN Weather Blur
k Design Bright. Fog Frost Snow Defoc. Glass Motion Zoom

0 w/o. Conv 44.93 46.01 46.18 49.86 61.58 71.90 57.86 71.89
1 w/o. Conv 43.31 43.27 46.16 48.72 59.65 71.25 56.86 69.20
2 w/o. Conv 43.63 46.01 45.34 49.33 60.71 71.37 57.88 71.50
4 w/o. Conv 44.28 43.18 45.47 50.67 60.92 71.43 56.39 71.41

0 DWC 43.59 45.17 46.34 47.84 59.39 70.06 54.25 69.37
2 DWC 43.39 46.42 45.71 47.45 59.64 70.79 55.08 70.48

Digital Noise mCE
Contra. Elast. JPEG Pixel. Gauss. Impulse Shot

0 w/o. Conv 42.31 66.58 60.42 59.12 46.29 46.39 47.72 54.60
1 w/o. Conv 40.40 67.30 56.06 52.14 43.60 43.60 44.53 52.40
2 w/o. Conv 40.25 66.93 57.03 52.87 44.19 44.03 45.36 53.10
4 w/o. Conv 40.91 67.19 56.84 52.75 43.98 43.74 45.00 52.94

0 DWC 40.97 65.66 58.53 50.48 44.60 44.52 45.35 52.41
2 DWC 39.64 65.80 57.05 51.32 43.67 43.48 44.44 52.29
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Swin-T + OPE.

Fig. 5. Comparison between Fourier heatmaps of Swin-T with overlapping
patch embedding and convolutional FFN.

Additionally, convolutional designs increase the accuracy on
corruptions from similar categories. The architecture with
combined designs yields the best results on corruption cat-
egories of noise.

VII. IMPLEMENTATION DETAILS

For the experiments exploring the architectural designs, we
trained ViTs from scratch for 300 epochs with a learning rate
of 1e−3 and a batch size of 1024. We used the Adam-W [36]
optimizer with a cosine decay learning rate scheduler. The
augmentation and regularization strategies used were identical
to those used for the corresponding ViT variants unless other-
wise specified. On the other hand, we conducted training with
different augmentation strategies in various settings. For basic
augmentations, we trained DeiT and Swin transformer for 300
epochs following their original training schedule, although one
type of augmentation was removed.

Advanced augmentations. We trained ViTs from scratch and
applied advanced augmentations. For AugMix, we optimized
it with the JSD loss and removed repeated augmentations.
Specifically, we split the training data into three parts and
applied augmentation with a magnitude of 5, chain width of
3, and chain depth of 2 via implementation in library [46].

Notably, compared with vanilla ANT, our implementation
includes additive augmentation strategies (i.e., color, contrast,
brightness, and sharpness). For Three-Augment [56], we fol-
low Touvron et al. to remove repeated augmentation and
MixUp, replaced RandAugment with a simple combination
of grayscale, Gaussian blur and solarization, and employed a
color jitter of 0.3 and horizontal flip.

We implement PixMix [25] in its original setting by ran-
domly sampling fractals from datasets released by Hendrycks
et al. and mixing them with training samples via either
addition or multiplication. On the other hand, we employed
PRIME [40] with hyperparameters following the original
settings on ImageNet.

Adversarial noise augmentation.We optimized ViTs and the
noise generator separately during training. Specifically, the
learning rate for ViTs is 1e−3 on the basis of a batch size of
1024, and that for noise generators was fixed to 8e−5 for all
experiments. We employed an Adam [31] optimizer for noise
generators, and all augmentation strategies were retained since
they improve the final results in Tab. XI. For training with
conditional ANT from scratch, we followed AdvProp [63] by
casting noise on a duplicated batch of training samples. In this
way, we continued to use 50% noisy samples.

VIII. CONCLUSION AND DISCUSSION

Currently, deep models have achieved compelling perfor-
mance on in-domain test datasets, yet they are still susceptible
to corrupted real-world visual data. This study revealed that
strategies including overlapping patch embedding and convo-
lutional feed-forward networks could facilitate robustness to
common corruptions of ViTs. In addition, we benchmarked
ViTs on a wide range of augmentation strategies and delved
into the adversarial noise training technique. We observed that
ViTs are adequately compatible with this strong adversarial
augmentation. Moreover, we proposed conditional adversarial
augmentation to enable ViTs to achieve state-of-the-art robust-
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ness performance. We hope that our explorations provide the
research community with better insights.
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