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ABSTRACT

The recent advances in deep neural networks have demonstrated
high capability in a wide variety of scenarios. Nevertheless, fine-
tuning deep models in a new domain still requires a significant
amount of labeled data despite expensive labeling efforts. A valid
question is how to leverage the source knowledge plus unlabeled
or only sparsely labeled target data for learning a new model in
target domain. The core problem is to bring the source and target
distributions closer in the feature space. In the paper, we facilitate
this issue in an adversarial learning framework, in which a domain
discriminator is devised to handle domain shift. Particularly, we
explore the learning in the context of hashing problem, which has
been studied extensively due to its great efficiency in gigantic data.
Specifically, a novel Deep Domain Adaptation Hashing with Adver-
sarial learning (DeDAHA) architecture is presented, which mainly
consists of three components: a deep convolutional neural network-
s (CNN) for learning basic image/frame representation followed
by an adversary stream on one hand to optimize the domain dis-
criminator, and on the other, to interact with each domain-specific
hashing stream for encoding image representation to hash codes.
The whole architecture is trained end-to-end by jointly optimizing
two types of losses, i.e., triplet ranking loss to preserve the relative
similarity ordering in the input triplets and adversarial loss to max-
imally fool the domain discriminator with the learnt source and
target feature distributions. Extensive experiments are conducted
on three domain transfer tasks, including cross-domain digits re-
trieval, image to image and image to video transfers, on several
benchmarks. Our DeDAHA framework achieves superior results
when compared to the state-of-the-art techniques.
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1 INTRODUCTION

Convolutional Neural Networks (CNN) have convincingly been
regarded as a powerful class of models for learning visual repre-
sentation, which are generically workable across different tasks
and visual domains [38]. To date in the literature, there are various
datasets (e.g., ImageNet [22]) that include expert labeled training da-
ta available for developing CNN from AlexNet [10] to more recent
ResNet [4] and its variants [35]. Nevertheless, given a new dataset,
the typical solution is still to perform “intensive manual labeling"
and then fine-tune the pre-learnt CNN with the examples collected
for the new dataset. Many previous experiences have also shown
that by doing so can generate satisfactory performance, though
the learnt CNN may not be that transferable when being applied
in another dataset due to a phenomenon known as “domain shift."
As a result, there have been several domain adaptation techniques
being proposed for alleviating this challenge by learning deep trans-
formations to map both domains into a common representation
distribution. A general practice to optimize the mappings is to mini-
mize the measure of domain shift such as correlation distances [25]
or maximum mean discrepancy [28].

The inspiration of recent attempts on domain adaptation are
from the advances of adversarial learning, which is to model do-
main distribution via an adversarial objective with respect to a
domain discriminator. The spirit behind is from generative adver-
sarial learning [6], that trains two models, i.e., a generative model
and a discriminative model, by pitting them against each other. This
process corresponds to a minimax two-player game, in which a gen-
erative model is to capture the data distribution and a discriminative
model aims to estimate the probability that a sample is from the
real training data rather than the generative model. The two mod-
els are trained simultaneously and the learning of the generative
model is to fool the discriminative model into making mistakes. In
the context of domain adaptation, this adversarial principle is then
equivalent to guiding the representation learning in both domains,
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making the difference between source and target representation
distributions indistinguishable through the domain discriminator.
We follow this elegant recipe and capitalize on adversarial learning
for domain adaptation. Furthermore, with the tremendous increase
of multimedia data on the Web, the need to search for millions of
visual examples in a high-dimensional feature space motivates the
surge of research in large-scale visual search. In between, Hashing
techniques [32] are probably the “hottest" topic that produces a
compact binary representation for each example and measures vi-
sual similarity by computing the Hamming distance between each
two hash codes, leading to a very efficient search. Therefore, we
are particularly investigating the problem of domain adaptation on
binary representation learning in this work.

By consolidating the idea of adversarial learning into domain
adaptation for enhancing binary representation generation, we
present a novel Deep Domain Adaptation Hashing with Adversarial
learning (DeDAHA) architecture, as shown in Figure 1. Specifically,
we form a set of image (video frame) triplets as the input and
each tuple contains one query image, one semantically similar
image and one dissimilar image. A CNN is employed to produce
visual representations of each image (video frame), followed by an
adversary stream to differentiate the representation distributions of
source and target domains. Meanwhile, a hash stream is devised to
encode hash codes in each domain and benefited from interacting
with adversary stream to aggregate domain-invariant and domain-
specific knowledge for enhancing hash learning. More importantly,
we untie weight sharing of CNN in each domain to explicitly model
the domain shift rather than enforcing the target close to source as
much as possible. The whole architecture of DeDAHA is trained
end-to-end by optimizing two kinds of losses, i.e., triplet ranking
loss to characterize relative similarity ordering in the triplets from
each domain and adversarial loss to make the domain discriminator
unable to differentiate between the source and target distributions.
As such, our DeDAHA endows the target model with more power of
exploring source distribution and thus ensures good generalization
ability. Moreover, the generated hash codes could better reflect
semantic relations between images (video frames). It is also worth
noting that our framework could be easily extended to unsupervised
scenario, i.e., there is no labeled data in target domain, which will
be explored and elaborated in Section 3.5.

The main contribution of this work is the proposal of DeDAHA
framework to learn domain adaptive binary representation in a
domain adversarial manner. The solution also leads to the elegant
views of how adversarial training should be leveraged for domain
adaptation when there are only a few and even no labeled data
in target domain and how the interactions across streams could
be taken into account to boost hash learning, which are problems
not yet fully understood. The remaining sections are organized as
follows. Section 2 describes the related works on both hashing and
domain adaptation. Section 3 presents our proposed DeDAHA mod-
el and the extensions on unsupervised setting. Section 4 provides
empirical evaluations, followed by the conclusions in Section 5.

2 RELATED WORK

We summarize recent works related to our proposed approach into
two categories: hash learning and deep domain adaptation. The
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former emphasizes learning to encode data points into compact
binary codes for efficient similarity search, while the latter focuses
on the domain shift problem in deep learning framework.

Hashing for Search. The research in learning to hash proceeds
along two dimensions: handcrafted feature based hashing and deep
learning based hashing. The former direction can be briefly grouped
into three categories: unsupervised hashing, supervised hashing,
and semi-supervised hashing. Unsupervised hashing tries to capture
the underlying structure information among unlabeled data [3]. For
example, Spectral Hashing [33] learns compact binary codes by
preserving the similarity between samples. In contrast, we refer
to the problem as supervised hashing when all label information
is available for use. The representative in this category is Kernel-
based Supervised Hashing (KSH) [14], which applies kernelization
to formulate hash functions and minimizes the loss function over
hash codes. In addition, to utilize both the labeled and unlabeled
training data, semi-supervised hashing methods [17, 31] are studied.

Benefiting from recent advances in image representation using
deep CNN, a few deep architecture based hashing methods have
been proposed for image retrieval. Semantic Hashing [23] is the
one of the early works to exploit deep learning techniques for hash-
ing. It applies the stacked Restricted Boltzmann Machine (RBM) to
learn hash codes for visual search. Xia et al. propose a two-stage
hash learning method called Convolutional Neural Networks Hash-
ing (CNNH) [34], where the feature learning stage and hash codes
generation stage are separated. Furthermore, Network In Network
Hashing (NINH) exploits triplet ranking loss to model the similarity
relationships between images in [11]. Later in [36], Yao et al. devise
a two-stream framework, which combines hash coding and classifi-
cation for preserving not only relative similarity between images
but also semantic structures on images. More recently, [18] en-
larges training data with synthetic images generated by generative
adversarial networks (GANSs) for better hash learning.

In short, while all the aforementioned deep hashing methods
achieve impressive results on specific datasets, it is difficult to
directly apply the trained models to other data due to the domain
shift. To solve this problem, our work mainly focuses on how to
adapt hashing model trained in source domain with rich labeled
data to a target domain with scarce or even no labeled data.

Deep Domain Adaptation. Domain adaptation [13] aims to
transfer knowledge from a labeled source domain to a target do-
main where labeled data is sparse or completely unavailable. Early
approaches of domain adaptation focus on building feature rep-
resentations that are invariant across domains. This was accom-
plished either by feature embedding [37] or selection mechanism-
s [5]. Though deep neural networks have successfully demonstrated
high capability in learning visual representations [4, 10], the pow-
erful features still largely rely on specific training dataset and may
lead to poor performance when applying to others [38]. To utilize
the effective pre-trained models, many deep domain adaptation
methods have been proposed and proceeded along a few dimen-
sions. One line of methods utilize Maximum Mean Discrepancy
(MMD) as the metric to measure the shift between domains. Deep
Domain Confusion (DDC) [28] applies MMD as well as the regular
classification loss on the source to learn representations that are
both discriminative and domain invariant. Deep Adaptation Net-
work (DAN) [15] extends this idea by embedding all task specific
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Figure 1: The framework of Deep Domain Adaptation Hashing with Adversarial learning (DeDAHA). The triplets from source and target
domains are fed into two unshared weights CNNs to learn visual representations in each domain, followed by two streams, i.e., adversary
and hash streams. Adversary stream makes the distributions of source and target domains indistinguishable through a domain discriminator.
Hash stream encodes hash codes in each domain and benefits from interacting with adversary stream to aggregate domain-invariant and
domain-specific knowledge for enhancing hash learning (dashed arrow). Better viewed in original color pdf.

layers in a reproducing kernel Hilbert space. In Deep Correlation
Alignment (CORAL) [25], MMD is exploited to match the mean
and covariance of two distributions.

Another direction aims at learning domain indistinguishable rep-
resentations to bridge domain gap. Tzeng et al. [26] utilize a binary
domain classifier and devise the domain confusion loss to encourage
the predicted domain labels to be uniformly distributed. Inspired
by adversarial learning in [6], the gradient reversal algorithm pro-
posed in [2] treats domain invariance as a binary classification
problem. It minimizes the loss of class classifier, and maximizes
the loss of domain classifier. With standard adversarial training,
Adversarial Discriminative Domain Adaptation (ADDA) [27] unties
weight sharing of CNN models in source and target domains. It
allows to learn domain specific feature embedding and improves
the classification accuracy in target domain. In the context of do-
main adaptation for semantic segmentation [39], the adversarial
principle is then equivalent to guiding the representation learning
across domains, making the difference between source and target
representation distributions indistinguishable through the domain
discriminator on each image region. Moreover, Venkateswara et
al. [30] address the domain adaptation hashing problem by a deep
hashing framework with Multi-Kernel Maximum Mean Discrepan-
cy (MK-MMD) loss. Our work in this paper contributes by studying
not only domain adaptation through adversarial learning, but also
how to aggregate domain-specific and domain-invariant knowledge
through stream interaction in a deep architecture.

3 DEEP DOMAIN ADAPTATION HASHING
WITH ADVERSARIAL LEARNING

In this section we present the proposed Deep Domain Adaptation
Hashing with Adversarial learning framework (DeDAHA). Figure
1 illustrates the overview of our framework for domain adaptation
hashing. It consists of three key components: the unshared weights
CNN, an adversary stream with a domain discriminator, and one
hash learning stream in each domain. CNN models are utilized to
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extract basic feature representations. In adversary stream, a do-
main discriminator D is designed to classify which domain the data
comes from. Then the adversarial loss is exploited to maximally
fool the discriminator with the learned source and target feature
distributions. In hash stream, the intermediate domain-specific
representations are augmented by concatenating representations
from adversary stream, which incorporate the domain-invariant
knowledge learned through discriminator. The triplet ranking loss
is further utilized to preserve semantic similarity. Particularly, sev-
eral training strategies are devised to obtain good domain-shift
models. First, unlike traditional domain adaptation which aims to
learn domain-invariant representations with unique CNN model,
we untie weight sharing of CNN in each domain to learn more dis-
criminative features. Second, we attempt to seek a common feature
distribution for both source and target domains to adapt, instead of
enforcing the target close to source as much as possible. In addition,
we also extend our DeDAHA framework to fit the extreme case
when there is no labeled data available in target domain.

3.1 Notation

Given n samples X; = {xili =1,...,n} in target domain with la-
bels L; = {lfli =1,...,n}, and m samples X = {xélj =1,...m}in
source domain with labels Lg = {lé lj =1,...,m}, n < m, the goal
of domain adaptation hashing is to learn a target hash mapping
Hy xp — {0, 1)K adapted from source hash mapping model H,
such that a target domain sample x; could be well encoded into
K-bit binary code H; (x;). Our approach builds upon two streams,
i.e., the adversary stream and hash stream, both of which take the
outputs of CNN model as inputs.

3.2 Adversary Stream

The adversarial learning [6] has provided a series of elegant learn-
ing schemes for many tasks, such as image and text generation.
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Particularly, in the problem of domain adaptation, this adversar-
ial principle is equivalent to guiding the learning of both source
and target feature representations Fs and F;, making their feature
distributions indistinguishable through a domain discriminator D.
The whole framework corresponds to a two-player minimax game.
The CNN feature model F, which can be treated as the generator in
GAN:S, is to learn indistinguishable representations across source
and target domains. The discriminator D, which consists of a series
of fully-connected (FC) layers, tries best to differentiate between
them. [26] is one recent framework to model the domain adaptation
in an adversarial manner. It exploits the domain confusion loss to
minimize the discrepancy between source and target distribution-
s, and simultaneously trains a domain classifier to identify them.
In particular, it shares the parameters of source and target CNN
models to learn domain-invariant representations. However, when
the gap between source and target domains is large, it is unreason-
able to force the target distribution F;(X;) identical to the source
distribution Fs(X), making such framework sub-optimal in many
practical scenarios. Consequently, we untie weight sharing of CNN
in each domain, and formulate adversarial loss as

min Lo, (Xs, X, Fs, Ft) = —Ex~x, [10g(D(Fe (x1)))]

— Exo~X;s [log(1 - D(Fs(xs))],
Ignilr:lt -Cadp (X5, X, D) = —Exs~X; [log(D(Fs (x5))]

= Ex;~x;[log(1 = D(F¢(x:)))],

where L,q,, and £,q,. are exploited to optimize the discriminator
and the feature model, respectively. Such mechanism clearly models
domain shift instead of enforcing representations with identical
model, and is thus helpful to learn the domain-invariant knowledge.
In addition, the source feature model F; is not fixed during training.
It tries to seek a common feature space that is appropriate for both
domains, instead of enforcing target towards source. To this end,
optimized with the adversarial objective in Eq.(1), a more effective
domain shift model could be learned.

The adversary stream explicitly utilizes the discriminator for
domain adaptation learning. In addition, the learned intermediate
domain-invariant representations are further exploited in the hash
stream, which will be described in the following section.

1

3.3 Hash Stream

The hash stream is devised to map the feature representation to bi-
nary codes. It consists of several FC layers, denoted as hash encoder.
In the traditional hash learning, the binary encoding of each sam-
ple is always treated independently in point-wise hashing methods
[21], regardless of the similarity relationships between samples.
Furthermore, the relative similarity relations like “for query x, it
should be more similar to sample x* than to x~” are reflected in the
class labels in view that x and x* belong to the same class while
x~ comes from another category. To fully take advantage of such
relationships, our hash stream is learned in a triplet-wise manner
for both source and target domains, which aims to preserve the
relative similarity of the input triplets. Given a triplet (x,x™,x™)
where x* is more similar to the query exmaple x than x~, our goal
is to preserve such triplet ranking information in the Hamming
space. Therefore, the hash mapping 7 (-) is expected to satisfy that
the Hamming distance between H (x) and H (x*) is smaller than
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the distance between H (x) and H (x~). Accordingly, the triplet
ranking loss is defined as the following triplet-based hinge loss

Lipilet(H (x), H(x"), H(x7))
|H(x) = HEO||, + [ HE) = HED )
H(x), H(x"), H(x™) e (0. 1)K,

= max(0, 1 —

@

s.t.

where ||-||g is the Hamming distance. Note that the problem in
Eq. (2) is in general NP-hard because of the discrete constrain-
t H(x) € {0,1}X. Hence, a common continuous relaxation that
changes integer constraint to the range constraint is adopted, which
replaces H (x) with 7‘A{(x) € [0,1]X. The Hamming distance is also
replaced by the squared Euclidean distance. Finally, the hashing
loss function is formulated as

Liripler(H (x), H (x*), H(x7))
= max(0, 1 || (x) = HEO|[L + | H )~ HE|[) .
H(x), H(x), H(x") €0, 1]¥.

®)

s.t.

This loss is utilized for hashing in both source and target domains.

In the problem of domain adaptation hashing discussed in this
work, we aim to transfer the knowledge well learned in source
domain to target domain. Thus, the above approximate hash codes
‘ﬂ(x) are expected to involve knowledge from both domains. We
propose to aggregate the intermediate representations, {F1, F4d1} e
R?, in hash and adversary streams to facilitate the hash learning,
which implicitly encodes the domain-invariant knowledge from
adversary stream. Formally, the aggregated features FY are given by

©

where G denotes the aggregation operation. In our approach, we
adopt the concatenation aggregation function. We also explore oth-
er aggregation schemes, e.g., element-wise sum, in section 4.6 for
comparison, to validate the effectiveness of concatenation. Con-

F9 = G(Fh1, padr),

sequently, 7:((x) is generated from the concatenation aggregation
feature F9 € R?? with a linear mapping:

H (x) = sigmoid(WF9 + b), (5)

where W € REKX2d gnd p € RK represents the corresponding
weight and bias, respectively. Finally, the hash code H (x) is ob-
tained by quantizing the H (x) to {0, 1}X.

3.4 Optimization

Our proposed domain adaptation hashing method DeDAHA is
trained by jointly optimizing the above adversary and hash streams.
The overall training objective integrates the adversarial loss in
Eq. (1) and triplet ranking loss in Eq. (3). In adversary stream, the
objective function £,4 consists of the following two parts

min LadD (Xs» X, Fs, Fr) and min LadF (Xs, X1, D). (6)
D Fs, Fy

In hash stream, triplet ranking loss is utilized in both source and
target domains. The loss function L}, is formulated as

min Ly = )" Liripier (65, %5,55) + O, Leriglee (xt, %557, (7)
Ts Tt
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Figure 2: Extended DeDAHA (DeDAHA™) framework. It includes
three steps. Source domain pre-train step learns pre-trained mod-
el, which is utilized for target model initialization. Then we jointly
optimize the domain discriminator and fine-tune the source hash
encoder, with interaction between them. During target prediction,
the hash codes are generated by mapping aggregated features of t-
wo streams to binary codes. Dashed line boundary implies that it
will be optimized in this step and solid line boundary implies fixed.

where 75 and 7; is the triplet set in source and target domain,
respectively. The whole framework is jointly optimized in an end-
to-end manner. The final loss function £ is then calculated by

L=alg+ Ly, (8)

where the parameter « is to balance the adversary and hash stream.

By combining adversary and hash streams, the source and target
feature distributions, Fs(Xs) and F; (X} ), will be closer and become
indistinguishable by the discriminator D. Meanwhile, the relative
visual similarity in each domain is preserved as well.

3.5 Extensions

When adapting existing model to a new domain, the extreme case is
that the labeled data in the new domain is completely unavailable. In
this section, we extend our framework to this case, i.e., only labeled
data in source domain L is available. The extended version of our
domain adaptation hashing with adversarial learning framework,
named DeDAHA™, is illustrated in Figure 2.

In the first step of training, we pre-train the hash stream in
source domain by using the source labeled data X with triplet
ranking loss. Since there is no adversary stream at this stage, only
the weights corresponding to hash stream are valid in W, which
are specifically denoted as Wy; € RE*d In the second step, we
initialize the target CNN with the learned source CNN in the first
step, and simultaneously optimize the adversary stream by incorpo-
rating unlabeled target data and fine-tune the source hash encoder
with the concatenated intermediate representations. The weight-
s W € RKX2d here are initialized with the concatenation of Ws1
and a zero matrix of 0 € RK*4 Tt is worth noting that we fix the
source CNN model during adversarial training and fine-tuning in
this step, which helps avoid model degeneration problem caused
by the unlabeled data in target domain. In the final step of hash
codes prediction in target domain, the learnt target CNN model is
utilized for basic feature extraction. By aggregating intermediate
representations from adversary stream, the learnt hash encoder for
source domain is adapted to generate hash codes for target domain.
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Table 1: The statistics of FCVID-S and ImageNet-F. The value de-
notes the number of videos/images in each category.

D Category FCVID-S | ImageNet-F || ID Category FCVID-S | ImageNet-F
1 | amusement park 568 1101 19 golfing 331 361
2 badminton 707 801 20 gorilla 572 1378
3 baseball 293 1156 21 hamster 223 832
4 beach 268 1073 22 laptop 372 1058
5 bee 271 1346 23 mountain 201 436
6 billiard 370 732 24 panda 236 1590
7 bird 294 1373 25 rabbit 525 934
8 bowling 295 585 26 river 252 670
9 butterfly 332 1286 27 | roller skating 304 1106
10 camel 807 977 28 | reflex camera 253 755
1 cat 328 868 29 skiing 390 687
12 cow 455 1017 30 snake 712 1086
13 | delicious food 159 1124 31 surfing 229 1125
14 dog 533 878 32 tennis 269 856
15 dolphin 230 542 33 treadmill 350 730
16 elephant 790 825 34 turtle 222 1211
17 forest 109 459 * Total 12699 31684
18 giraffe 419 726

Our extended domain adaptation hashing with adversarial learn-
ing thus follows the below optimization

. A + -
mlnz Ltriplet(xs, X5, X5 )
Ts

mEi)n Laap (Xs, Xt, Fs, Ft) = —Ex;~x; [log(D(F¢(xt)))]

— Exg~x, [log(1 - D(Fs(xs)))] .
n}i[n -EadF(XSv Xt, D) = _Ext~Xt [lOg(l - D(Ft(xt)))]

©)

Note that the adversarial learning of DeDAHA™ is slightly different
from that of DeDAHA. The DeDAHA™ optimizes the target dis-
tribution F;(X;) until it is indistinguishable from the fixed source
distribution Fs(Xs), while DeDAHA optimizes both F;(X;) and
F¢(Xs) towards a common feature space.

3.6 Retrieval in Target Domain

After the optimization of DeDAHA or DeDAHA™, we employ target
hashing model to generate K-bit hash codes. To obtain the binary
codes h;, a quantization operation h; = sign (7:{(xt) —0.5) is ex-
ploited. sign (v) is the sign function on vector v, where sign (v;) = 1
if v; > 0, otherwise sign (v;) = 0. Given a query in target domain,
the retrieval list is produced by sorting the Hamming distances of
hash codes between query and data points in search pool.

4 EXPERIMENTS

We conduct extensive evaluations of our proposal across five differ-
ent domain shifts, including four image to image domain transfer
and one image to video transfer. Domain adaptation across three
Digits datasets, i.e., MNIST [12], USPS and SVHN [16] are compre-
hensively studied. Moreover, we also explore two real world image
datasets: CIFAR-10 [9] and a subset of ImageNet [1] containing the
categories which share common definition with those in CIFAR-10.
For the image to video transfer, the subsets with common categories
of FCVID [8] and ImageNet are selected for evaluation.

4.1 Datasets

The MNIST and USPS image datasets are both handwritten Digits
datasets. The MNIST dataset consists of 70k images (28 x 28 pixels)
and the USPS dataset contains 9.3k images (16 X 16 pixels). Unlike
the two, the SVHN dataset is a real-world Digits dataset obtained
from house numbers in Google street view images and contains
over 600k images (32 X 32 pixels) in total.
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The CIFAR-10 dataset consists of 60k real world tiny images (32
X 32 pixels) from 10 categories, with 6k images per category. We
sample 1k images for each category in ImageNet and construct a
subset, namely ImageNet-C, as the target domain of CIFAR-10.

The FCVID dataset is a large video dataset which contains 91, 223
videos from 239 categories. In between FCVID and ImageNet dataset-
s, there are 34 categories which share common definitions and thus
we build the subset of FCVID and ImageNet, named FCVID-S and
ImageNet-F, respectively. Table 1 details the statistics of the two sub-
sets and ImageNet-F — FCVID-S is used for image to video transfer.

4.2 Experimental Settings

Domain Adaptation between Digits Datasets. Following [27],
we consider three transfer directions: MNIST — USPS, USPS —
MNIST and SVHN — MNIST, for domain adaptation between Digits
datasets. We sample 500 images per class for MNIST and SVHN,
and 300 images per class for USPS as the labeled data in source
domain. Moreover, different settings are adopted for DeDAHA and
DeDAHA™ when these datasets are regarded as target domain. For
DeDAHA, only a very small number of images (i.e., 3/5/10/15/20
images per class) are sampled as the labeled data in target domain.
While for DeDAHA™, 500 images per class for MNIST and 300 im-
ages per class for USPS are sampled as unlabeled data in target
domain. In the testing stage, we randomly select 1k images (100 im-
ages per class) as the test query set, and the rest images are utilized
as candidates to be retrieved. In addition, the CNN architecture is
a simple modified version of LeNet [12], which is also exploited
in [27]. The adversary stream includes three Fully-Connected (FC)
layers, with the structure of FC500-ReLU-FC500-ReLU-FC1. The
outputs from the second FC layer are utilized for aggregation in
hash stream, which implicitly enhances the hash function learning.
The hash stream consists of two FC layers with 500 and K (bit num-
ber) neurons respectively, where the output features in the first FC
layer are utilized for feature aggregation.

Image to Image Adaptation. The second experiment was con-
ducted on real image to image adaptation, i.e., CIFAR-10 — ImageNet-
C transfer. We sample 500 images per class for CIFAR-10 as the
labeled data in source domain. Similarly, we also have different
settings for DeDAHA and DeDAHA™ when performing domain
adaptation. For DeDAHA, the setting is the same with above Dig-
its adaptation, i.e., 3/5/10/15/20 images per class are sampled in
ImageNet-C as the labeled data. While for DeDAHA™, all the images
in ImageNet-C are exploited as the unlabeled data in target domain.
The setting of retrieval in testing stage is the same with adaptation
between Digits datasets. We utilize the 19-layer VGGNet [24] as
our basic CNN structure. The architectures of adversary and hash
streams are the same with those in digits adaptation, as well as the
feature aggregation scheme.

Image to Video adaptation. The third experiment was con-
ducted on the most challenging image to video transfer. We evalu-
ate this scenario on the transfer from ImageNet-F to FCVID-S. We
sample about 500 images per class from ImageNet-F as the labeled
data in source domain. The domain adaptation settings of DeDAHA
and DeDAHA™ are the same with image to image adaptation. In
the testing stage, 1,700 videos (50 videos per class) from 34 cate-
gories are randomly sampled to construct the query set, while the
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rest videos are all put into the retrieval pool. The basic network
architecture is the 19-layer VGGNet [24]. Different from the pre-
vious two adaptations, the architecture of adversary stream here
is FC256-ReLU-FC256-ReLU-FC1, while the hash stream contains
three FC layers that have 256, 256 and K neurons respectively. The
features from second FC layers of both adversary and hash streams
are aggregated. In the training on video dataset, 150 video clips
are randomly sampled in each original video. Then, five frames are
uniformly sampled in each clip. Finally, we averagely pool the CNN
features of five frames as the representation of each clip. The opti-
mization is performed on clip level. In testing, we uniformly sample
25 frames in each video and input each frame into the architecture
of hash stream to produce the feature vector of each frame. The final
hash codes of each video are generated by averagely pooling the
feature vectors of all the 25 frames plus the quantization operation.

Parameters configuration. All of our proposed methods are
implemented on Caffe [7] framework. We follow the suggested set-
tings in [20] for deep adversarial training and optimize our frame-
work by utilizing mini-batch stochastic gradient descent with 0.9
momentum. To balance the hash stream and adversary stream in
DeDAHA, the scale parameter « is determined by using a validation
set and is finally set to 0.1. The batch size is 32. The initial learning
rate is 0.0001 and we decrease it to 10% after 5k iterations on Digits
and real image to image adaptations, and 2k iterations on image to
video adaptation. The total iteration number is 15k.

4.3 Protocols and Baseline Methods

We follow four evaluation protocols, i.e., mean average precision
(MAP), hash lookup within Hamming radius 2, precision-recall
curve and precision curves w.r.t. different numbers of top returned
samples, which are widely used in [3, 11, 14, 34]. We compare
the following approaches for performance evaluation: (1) Source-
domain Hashing (SH) directly exploits the model trained on source
domain to predict hash codes of the examples in target domain. (2)
Target-domain Hashing (TH) trains the model only on the sparsely
labeled examples in target domain. (3) Mix-domain Hashing (MH)
optimizes the model with mixed labeled data from both source and
target domain. In each triplet, the three examples are from the same
domain. (4) Fine-Tune Hashing (FTH) learns the model first on the
training data in source domain and then fine-tunes the model with
the labeled data from target domain. (5) Domain Confusing Hash-
ing (DCH) combines deep hashing model with domain confusion
loss [26]. A domain classifier is trained to minimize the discrepancy
between domains. (6) Maximum Mean Discrepancy Hashing (MMD-
H) leverages deep hashing model with maximum mean discrepancy
(MMD) loss [28]. One MMD layer is used for domain-invariant
learning. (7) Multi-Kernel Maximum Mean Discrepancy Hashing
(MK-MMDH) [30] utilizes three multi-kernel MMD (MK-MMD) lay-
ers for domain adaptation in deep hashing network. (8) DeDAHA
and DeDAHA™ are our proposed approaches.

For fair comparison, the hash stream in all methods is the same.
Raw images are fed as inputs for Digits and CIFAR-10 datasets. For
ImageNet-C, we resize all images to 224X 224 pixels. For ImageNet-F
and FCVID-S, we follow the standard settings in video classification
[19], and resize each image/frame to 320 X 240 pixels and then crop
a 224 X 224 patch as the input.
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Table 2: Mean Average Precision (MAP) of domain adaptation hashing between Digits datasets. The performances by leveraging different
number of labeled examples from target domain are reported on three transfer directions.

labeled samples per class USPS — MNIST (MAP) MNIST — USPS (MAP) SVHN — MNIST (MAP)
. . Method - - : - - - : - - - - -
(in target domain) 12 bits ‘ 24 bits ‘ 32 bits ‘ 48 bits | 12 bits ‘ 24 bits ‘ 32 bits ‘ 48 bits | 12 bits ‘ 24 bits ‘ 32 bits ‘ 48 bits
SH 0.388 | 0.375 | 0.407 | 0.387 | 0512 | 0527 | 0579 | 0540 | 0.343 | 0.442 | 0.460 | 0.499
0 labeled sample/class -

DeDAHA 0.558 | 0.611 | 0.605 | 0561 | 0.621 | 0.611 | 0.666 | 0.663 | 0.470 | 0.533 | 0.546 | 0.525
TH 0429 | 0418 | 0428 | 0447 | 0430 | 0.431 | 0.466 | 0424 | 0429 | 0418 | 0428 | 0.447
MH 0514 | 0475 | 0475 | 0502 | 0556 | 0570 | 0.603 | 0.580 | 0.450 | 0.453 | 0.464 | 0.451
FTH 0.453 | 0496 | 0555 | 0511 | 0.477 | 0506 | 0.497 | 0.489 | 0.467 | 0.511 | 0.510 | 0.449
3 labeled samples/class DCH 0470 | 0497 | 0547 | 0531 | 0474 | 0486 | 0.498 | 0.485 | 0438 | 0.515 | 0.556 | 0.508
MMDH 0489 | 0490 | 0535 | 0513 | 0.477 | 0.480 | 0.491 | 0.499 | 0454 | 0.510 | 0.532 | 0.511
MK-MMDH | 0554 | 0.566 | 0.561 | 0.543 | 0.543 | 0.563 | 0.584 | 0.559 | 0.535 | 0.524 | 0.548 | 0.545
DeDAHA | 0.594 | 0.652 | 0.624 | 0.584 | 0.698 | 0.699 | 0.724 | 0.695 | 0.632 | 0.630 | 0.624 | 0.641
TH 0443 | 0480 | 0501 | 0524 | 0597 | 0.614 | 0.621 | 0.623 | 0.443 | 0.480 | 0501 | 0.524
MH 0541 | 0.615 | 0586 | 0.534 | 0.602 | 0.653 | 0.674 | 0.633 | 0473 | 0482 | 0.512 | 0.511
FTH 0.567 | 0.622 | 0.587 | 0.598 | 0.638 | 0.634 | 0.662 | 0.635 | 0.480 | 0.543 | 0.557 | 0.533
5 labeled samples/class DCH 0.524 | 0.605 | 0.592 | 0593 | 0.654 | 0.655 | 0.656 | 0.661 | 0.562 | 0.589 | 0.641 | 0.641
MMDH 0512 | 0593 | 0.601 | 0.581 | 0.622 | 0.640 | 0.631 | 0.655 | 0.531 | 0.553 | 0.588 | 0.571
MK-MMDH | 0.589 | 0.625 | 0.635 | 0.639 | 0.631 | 0.668 | 0.651 | 0.696 | 0.588 | 0.589 | 0.647 | 0.650
DeDAHA | 0.687 | 0.671 | 0.668 | 0.689 | 0.723 | 0.755 | 0.745 | 0.744 | 0.665 | 0.673 | 0.668 | 0.679
TH 0572 | 0.611 | 0.641 | 0.657 | 0.629 | 0.684 | 0.698 | 0.708 [ 0.572 [ 0.611 | 0.641 | 0.657
MH 0.660 | 0.657 | 0.664 | 0.662 | 0.683 | 0.676 | 0.677 | 0.670 | 0.491 | 0.493 | 0.521 | 0.513
FTH 0.602 | 0.688 | 0.711 | 0.686 | 0.662 | 0.669 | 0.674 | 0.664 | 0.526 | 0.555 | 0.562 | 0.567
10 labeled samples/class DCH 0.691 | 0.694 | 0720 | 0.718 | 0.743 | 0.723 | 0.741 | 0.755 | 0.660 | 0.663 | 0.653 | 0.646
MMDH 0.688 | 0.678 | 0.712 | 0.703 | 0.733 | 0.712 | 0.730 | 0.741 | 0.640 | 0.651 | 0.632 | 0.631
MK-MMDH | 0.701 | 0.694 | 0.741 | 0.740 | 0745 | 0.728 | 0.751 | 0.764 | 0.678 | 0.675 | 0.663 | 0.661
DeDAHA | 0.744 | 0.752 | 0.791 | 0.784 | 0.763 | 0.777 | 0.775 | 0.779 | 0.721 | 0.716 | 0.711 | 0.708
TH 0.631 | 0.669 | 0.661 | 0.669 | 0.681 | 0.721 | 0.721 | 0.747 | 0.631 | 0.669 | 0.661 | 0.669
MH 0.696 | 0.699 | 0.686 | 0.694 | 0.698 | 0.714 | 0.732 | 0.743 | 0.533 | 0.537 | 0.531 | 0.520
FTH 0.708 | 0.740 | 0.754 | 0.763 | 0.682 | 0.684 | 0.691 | 0.694 | 0.540 | 0.576 | 0.591 | 0.581
15 labeled samples/class DCH 0.706 | 0.744 | 0.758 | 0.754 | 0.757 | 0.756 | 0.760 | 0.766 | 0.676 | 0.685 | 0.702 | 0.700
MMDH 0.701 | 0741 | 0.744 | 0.741 | 0.744 | 0.742 | 0.743 | 0.759 | 0.666 | 0.675 | 0.693 | 0.684
MK-MMDH | 0.734 | 0.767 | 0.766 | 0.773 | 0.758 | 0.760 | 0.790 | 0.781 | 0.686 | 0.688 | 0.704 | 0.715
DeDAHA | 0.767 | 0.790 | 0.799 | 0.795 | 0.814 | 0.831 | 0.822 | 0.815 | 0.745 | 0.744 | 0.743 | 0.753
TH 0.659 | 0.673 | 0.679 | 0.693 | 0.776 | 0.773 | 0.792 | 0.786 | 0.659 | 0.673 | 0.679 | 0.693
MH 0.724 | 0751 | 0.739 | 0.760 | 0.750 | 0.742 | 0.755 | 0.748 | 0.560 | 0.576 | 0.562 | 0.565
FTH 0717 | 0759 | 0.760 | 0.787 | 0.693 | 0.713 | 0.716 | 0.716 | 0.570 | 0.636 | 0.634 | 0.611
20 labeled samples/class DCH 0717 | 0764 | 0.779 | 0.787 | 0.794 | 0.818 | 0.801 | 0.818 | 0.689 | 0.702 | 0.703 | 0.712
MMDH 0709 | 0761 | 0.771 | 0.785 | 0.783 | 0.791 | 0.794 | 0.801 | 0.671 | 0.688 | 0.699 | 0.701
MK-MMDH | 0.743 | 0.797 | 0.789 | 0.809 | 0.792 | 0.833 | 0.828 | 0.825 | 0.694 | 0.713 | 0.717 | 0.716
DeDAHA | 0.785 | 0.804 | 0.831 | 0.825 | 0.826 | 0.850 | 0.851 | 0.864 | 0.772 | 0.781 | 0.779 | 0.771

4.4 Domain Adaptation between Digit Datasets

Table 2 shows the MAP performance comparisons on three trans-
fer directions. Overall, the results across different number of hash
bits and three adaptations indicate that our DeDAHA consistent-
ly outperforms others. In particular, the MAP of DeDAHA with
48 bits makes the absolute improvement over the best competi-
tor MK-MMDH by 4.1%, 13.6% and 9.6% when exploiting only 3
target labeled examples on the adaptation of USPS — MNIST,
MNIST — USPS and SVHN — MNIST, respectively. As expect-
ed, the performances of all the supervised transfer hashing are
constantly boosted up with the increase of labeled examples from
target domain. DeDAHA™ leveraging unlabeled target data exhibits
significantly better performance than SH which capitalizes on only
source data. The result basically indicates the advantage of explor-
ing the shift between source and target distribution for adaptation.

Directly reapplying a model trained in source domain (SH) could
be much worse than re-developing a new model (TH) with more
than 5 labeled examples per class from target domain, demonstrat-
ing the domain gap. By simply mixing source and target data in the
training or fine-tuning the source model with target data, MH and
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FTH lead to better performances than TH when there are very few
training examples (3 or 5 per class in our case) available in target
domain. DCH improves MMDH, but the performance is still lower
than MK-MMDH. The results indicate that improvements can be
generally expected when extending the measure of domain dispari-
ty from MMD to adversarial learning or MK-MMD. Though both
DCH and DeDAHA model domain shift in an adversarial manner,
they are fundamentally different in the way that DCH is as a result
of viewing the two domains identically and sharing the network
parameters, while DeDAHA is by untying weight sharing and allow-
ing the method to learn parameters for each domain individually.
As indicated by our results, untied weight sharing leads to effective
adaptation. This somewhat reveals the weakness of network shar-
ing between two domains, which is to enforce the representation
domain-invariant. DeDAHA, in comparison, is benefited from the
mechanism of independently network learning, which explicitly
models the domain difference. More importantly, hash learning in
DeDAHA is enhanced by augmenting domain-specific representa-
tion and quantization with domain-invariant knowledge through
the interaction across streams.
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Figure 3: Comparisons with baseline hashing approaches on CIFAR-10 — ImageNet-C adaptation. (a) Mean Average Precision (MAP) with
48 bits by leveraging different number of labeled examples from target domain. (b) Precision-Recall curves with 48 bits (20 target labeled
examples per class). (c) Precision curves with 48 bits w.r.t. different number of top returned samples (20 target labeled examples per class).

0.6 0.600
ours [P sH == FTH =0~ MK-MDH Y,
]| e TH = DCH == DeDAHA- 0575 ; ¢ ¢ ¢ ¢ o
=¥- MH =@ MMDH == DeDAHA 05 P @ G e s @ e e s m
0.450 - P o o P
0.550 e Ak EE L ks el ik |
o 0.4 V-
0.425 -~
—— i o e o o Y e i W o Y i e Y e
- U B o lore) coleien Aerfers) e A P )
n, .S 2
= 0.400 E 0.3 £ y
~« o o 0.500 i
= ) i
= 0375 = = h
Q.02 A 0475 ; :
0.350 §
o1 | 0.450 % A *
0325 e Sl —a= T - MKMMDII e SH == FTH ~@- MK-MMDH
—fr= TH == DCH == DeDAHA~ 0425 7 |mefpm TH == DCH == DeDAHA~
0.300 007|=w= MH =@= MMDH == DeDAHA =¥= MH =@= MMDH == DeDAHA
0.400 T T T T T
3 5 10 15 20 0.0 0.2 o4 06 08 10 50 100 150 200 250 300
# of labeled examples per class Recall # of top returned frames

(@) (b) (©)
Figure 4: Comparisons with baseline hashing approaches on ImageNet-F — FCVID-S adaptation. (a) Mean Average Precision (MAP) with
48 bits by leveraging different number of labeled examples from target domain. (b) Precision-Recall curves with 48 bits (20 target labeled
examples per class). (c) Precision curves with 48 bits w.r.t. different number of top returned samples (20 target labeled examples per class).

N == o = Figure 3 and Figure 4 detail the performances on the adaptation
E” IR —feovn g = = i Dooaia of CIFAR-10 — ImageNet-C and ImageNet-F — FCVID-S. Our

DeDAHA consistently outperforms other runs on two adaptations
in terms of MAP when leveraging different numbers of labeled
examples in target domain, Precision-Recall curves with 48 bits and
Precision curves with 48 bits w.r.t. different number of top returned
samples. With the increase of labeled examples in target domain,
. e s the performances of all the supervised transfer hashing in general

(j)“t " (t)m a gradually increase on both adaptations. Similar to the observations
Figure 5: Precision within Hamming radius 2 using hashing look on adaptations between Digit datasets, DeDAHA™ performs better
up performance (20 target labeled examples per class). (a) USPS — than SH, which verifies our domain shift modeling through ad-
MNIST adaptation. (b) MNIST — USPS adaptation. versarial learning. SH constantly exhibits better performance than
The evaluations of hash lookup within Hamming radius 2 are giv- TH on the adaptation of CIFAR-10 — ImageNet-C. In the transfer
en in Figure 5 on the adaptation of USPS—MNIST and MNIST — of ImageNet-F — FCVID-S, the MAP of TH is much lower than
USPS with 20 labeled examples per class from target domain. Al- that of SH especially when there are very few labeled examples
though the number of samples falling into a bucket decreases expo- available from FCVID-S dataset (less than 15 in our case). Further-
nentially for larger bits of hash codes, the precisions for most of more, TH starts to surplus the performance of SH when 20 labeled
the methods still have improvements with the increase of hash bits. examples per class are available for training. The results give a clue
Particularly, the precision of our DeDAHA even has a clear boost that transferring from image to video is much harder than image
from 90.8% of 32 bits to 91.8% of 48 bits in the transfer direction of to image. In other words, the gap across different image datasets is
MNIST — USPS, verifying the effectiveness of DeDAHA. in general smaller than that between image and video domains.
MH and FTH involve utilization of both source and target labeled
4.5 Image to Image Adaptation and Image to data. Different training strategy is employed by each in the way
Video Adaptation that MH is as a result of directly mixing source and target data

in the training and treating the two domains equally, while FTH

The second and third experiment was conducted on more challeng-
is by training the model in a two-stage scheme and at each stage

ing real image to image and image to video adaptation, respectively.
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Figure 6: Examples showing the top 10 retrieval results by dlﬁ“erent methods in response to two query v1deos in FCVID-S dataset (better
viewed in color). Each video is represented by one sampled frame. In each row, the first video with a red bounding box is the query video and
the videos belong to the same category of the query video are regarded as correct ones, which are enclosed in a blue bounding box.

Table 3: Mean Average Precision (MAP) performance comparisons
between DeDAHA and DeDAHA-I (w/o interaction) or DeDAHA-A
(w/ interaction by element-wisely summating two representations).
The results are reported with 20 labeled target samples/class on the
adaptation of CIFAR-10—ImageNet-C and ImageNet-F—FCVID-S.

CIFAR-10 — ImageNet-C ImageNet-F — FCVID-S
Method - - . - - - - -
12 bits 24 bits 32 bits 48 bits | 12 bits 24 bits 32 bits 48 bits
DeDAHA 0.422 0.428 0411 0405 | 0.471 0.482 0.478 0.478
DeDAHA-A | 0.415 0.420 0.392 0.397 0.466 0.471 0.470 0.471
DeDAHA-I 0.391 0.403 0.385 0.383 0.459 0.456 0.458 0.462

only the labeled data from one domain is exploited. As indicated
by our results, FTH leads to better performance gain than MH
on CIFAR-10 — ImageNet-C transfer. This observation is not sur-
prise because the domain gap between CIFAR-10 and ImageNet-C
datasets is not too large and thus directly fine-tuning the source
model with target data tends to adapt the model to the target do-
main. Instead, the improvement of MH is more obvious than FTH
on the adaptation of ImageNet-F — FCVID-S. This somewhat re-
veals the weakness of fine-tuning. When the domain gap is large,
directly fine-tuning may degrade the source model sharply. In con-
trast, MH by mixing the source and target data could alleviate the
effects of domain shift. Similar to the observations on adaptations
between digital datasets, DCH and MK-MMDH outperform MMDH
on both transfers. Compared to DCH, the performance gain of our
DeDAHA is much larger in ImageNet-F — FCVID-S transfer than
that of adaptation from CIFAR-10 to ImageNet-C. The results again
indicate that DCH enforcing domain invariance will be detrimental
to discriminative power when there is a big domain difference.

Figure 6 showcases the top ten video search results by different
methods in response to two query videos. Each video is represented
by one sampled frame. We can see that DeDAHA achieves the most
satisfying results, and retrieves nine correct videos in the returned
top ten videos to each query video, respectively.

4.6 The Effect of Stream Interaction

Next, we turn to evaluate how hashing performance is affected
when streams of hashing and adversarial learning interact through
DeDAHA training. We designed two runs for comparisons, i.e.,
DeDAHA-A and DeDAHA-I. DeDAHA-A performs interactions
by element-wisely summating the intermediate representations
from hash and adversary streams, and DeDAHA-I decouples the
interaction between the two streams, in which each stream is opti-
mized independently. The MAP performance comparisons across
different hash bit on the adaptation of CIFAR-10 — ImageNet-C
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Figure 7: Sensitivity analysis of «. The MAP performances on 48
bits are reported with 20 labeled target samples/class.

and ImageNet-F — FCVID-S are summarized in Table 3. Overall,
DeDAHA and DeDAHA-A both exhibit better performance than
DeDAHA-I The results indicate the advantage of exploring inter-
action across two streams and endowing domain-specific hashing
more power with domain-invariant knowledge learnt in adversary
stream. Though DeDAHA and DeDAHA-A both involve utilization
of stream interaction, they are different in the way of representation
augmentation. DeDAHA is as a result of concatenating the repre-
sentations from two streams and DeDAHA-A is by element-wisely
summating the two intermediate representations. As indicated by
our results, concatenation can lead to better performance than
element-wise summation.

4.7 Parameter Sensitivity

A common problem with combination of multiple losses is the need
to set the tradeoff parameters in between. Figure 7 shows the MAP
performance of DeDAHA with respect to different « in Eq.(8) on
two adaptations. As shown in the Figure, the two curves are both
like “A" shape when « varies from 0.01 to 0.2. This validates the
joint learning of hash stream and adversary stream to boost hashing
in the context of domain adaptation.

4.8 Binary Representation Visualization

Figure 8 depicts the t-SNE [29] visualization of hash codes obtained
by SH and DeDAHA. Specifically, we randomly select 3,400 samples
from 34 classes (100 samples per class) in each domain (ImageNet-F
as source and FCVID-S as target) and the obtained hash codes are
then projected into 2-dimensional space using t-SNE. We can see
that the distribution of target samples is far from that of source
samples before domain adaptation. Through domain adaptation by
our DeDAHA, the two distributions are brought closer, making the
target distribution indistinguishable from the source one.
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(b)

Figure 8: Hash codes visualizations of source and target domain us-
ing t-SNE. Each image/video is visualized as one point and colors de-
note different domains (red: source, blue: target). (a) Before domain
adaptation (i.e., SH). (b) After domain adaptation by our DeDAHA.

(@

5 CONCLUSIONS

We have presented a Deep Domain Adaptation Hashing with Adver-
sarial learning (DeDAHA) architecture which explores adversarial
learning to model domain shift for binary representation genera-
tion. Particularly, we study the problem from three perspectives:
1) when there are sparsely or not any labeled target data available;
2) how to model domain distribution in an adversarial manner; 3)
exploring the interaction between the streams of hash learning and
domain discriminator. To verify our claim, we optimize the whole
architecture of our hashing model by simultaneously fooling the do-
main discriminator with the learnt two distributions and preserving
relative similarity between images/frames. Experiments conducted
on three types of domain transfer tasks validate our proposal and
analysis. Performance improvements are clearly observed when
comparing to other domain adaptation methods on hashing.

Our future works are as follows. First, binary representation
learning can be further enhanced by explicitly considering seman-
tics of the image/frame. Hence, a classification stream could be
exploited in addition to current two streams to leverage semantic
supervision. Second, more in-depth studies of how two streams
should be interacted to boost hashing will be investigated. Third,
the idea of alleviating domain shift with adversarial learning will
be explored for other problems, e.g., semantic segmentation.
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