
22

Deep Uncoupled Discrete Hashing via Similarity Matrix

Decomposition

DAYAN WU, Institute of Information Engineering, Chinese Academy of Sciences, China

QI DAI, Microsoft Research Asia, China

BO LI and WEIPING WANG, Institute of Information Engineering, Chinese Academy of Sciences, China

Hashing has been drawing increasing attention in the task of large-scale image retrieval owing to its stor-

age and computation efficiency, especially the recent asymmetric deep hashing methods. These approaches

treat the query and database in an asymmetric way and can take full advantage of the whole training data.

Though it has achieved state-of-the-art performance, asymmetric deep hashing methods still suffer from the

large quantization error and efficiency problem on large-scale datasets due to the tight coupling between the

query and database. In this article, we propose a novel asymmetric hashing method, called Deep Uncoupled

Discrete Hashing (DUDH), for large-scale approximate nearest neighbor search. Instead of directly preserv-

ing the similarity between the query and database, DUDH first exploits a small similarity-transfer image set

to transfer the underlying semantic structures from the database to the query and implicitly keep the de-

sired similarity. As a result, the large similarity matrix is decomposed into two relatively small ones and the

query is decoupled from the database. Then both database codes and similarity-transfer codes are directly

learned during optimization. The quantization error of DUDH only exists in the process of preserving simi-

larity between the query and similarity-transfer set. By uncoupling the query from the database, the training

cost of optimizing the CNN model for the query is no longer related to the size of the database. Besides, to

further accelerate the training process, we propose to optimize the similarity-transfer codes with a constant-

approximation solution. In doing so, the training cost of optimizing similarity-transfer codes can be almost

ignored. Extensive experiments on four widely used image retrieval benchmarks demonstrate that DUDH can

achieve state-of-the-art retrieval performance with remarkable training cost reduction (30%−50% relative).

CCS Concepts: • Information systems→ Image search;

Additional Key Words and Phrases: Deep hashing, similarity-transfer, large-scale image retrieval

ACM Reference format:

Dayan Wu, Qi Dai, Bo Li, and Weiping Wang. 2023. Deep Uncoupled Discrete Hashing via Similarity Matrix

Decomposition. ACM Trans. Multimedia Comput. Commun. Appl. 19, 1, Article 22 (January 2023), 22 pages.

https://doi.org/10.1145/3524021

This work was supported by the National Natural Science Foundation of China (No. 62106258 and No. 62006242).

Authors’ addresses: D. Wu, B. Li (corresponding author), and W. Wang, Institute of Information Engineering, Chinese

Academy of Sciences, Beijing, China; emails: {wudayan, libo, wangweiping}@iie.ac.cn; Q. Dai, Microsoft Research Asia,

Beijing, China; email: qid@micorsoft.com.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1551-6857/2023/1-ART22 $15.00

https://doi.org/10.1145/3524021

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

https://doi.org/10.1145/3524021
mailto:permissions@acm.org
https://doi.org/10.1145/3524021
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3524021&domain=pdf&date_stamp=2023-01-05

22:2 D. Wu et al.

1 INTRODUCTION

Hashing aims to encode raw data into short binary codes while preserving data similarity informa-
tion in the Hamming space. Due to its high storage and computational efficiency, hashing has been
widely used in various computer vision tasks, e.g., large-scale image retrieval [14, 15, 18, 42, 51],
video retrieval [25, 34], cross-modal retrieval [19, 23, 54], person re-identification [45, 57], and clas-
sification [37]. In this article, we focus on incorporating deep neural networks into the learning
of hash codes for large-scale image retrieval. Such approaches [24, 30], also named deep hashing
methods, have shown better performance than traditional hashing methods with hand-crafted fea-
tures like Locality-Sensitive Hashing (LSH) [11], Spectral Hashing (SH) [43], and Iterative
Quantization [12].

To date in the literature, deep hashing methods generally leverage the strong representation
capability of the powerful convolutional neural networks (CNNs) to capture the underlying
semantics of images. With the paradigm of simultaneously learning features and hash functions,
these methods can take full advantage of the pre-trained CNN, achieving satisfactory results.
A large number of approaches have been proposed recently, including both symmetric hashing
[1, 5, 6, 10, 20, 28, 32, 39, 40, 53, 61] and asymmetric hashing [3, 18, 44] methods.

Among plentiful deep hashing methods, deep asymmetric hashing methods [3, 18, 36] have
demonstrated superior retrieval performance to the conventional symmetric ones. Such methods
exploit different hashing functions for the query and database, which are proven to be more ef-
fective in preserving similarity information. The state-of-the-art Asymmetric Deep Supervised

Hashing (ADSH) [18] and Deep Anchor Graph Hashing (DAGH) [3] are two representative
approaches. By learning hash function only for queries while directly obtaining hash codes for
the database, they can capitalize on the whole training data and thus achieve promising results.
Nevertheless, they still suffer from the large quantization error problem on large-scale datasets,
though their database codes are directly optimized. ADSH and DAGH adopt the tanh function
to approximate the sign function when learning the hash function for queries, which means the
quantization error still exists on the query side. As the query codes are closely bound up with the
database codes, the quantization error is directly related to the size of the similarity matrix be-
tween the query and database. Apart from the quantization problem, the tight coupling between
the database and query also causes an efficiency problem, as the computation cost for optimizing
the convolutional neural network is directly related to the size of the database.

The main cause of the quantization and efficiency problem in deep asymmetric hashing meth-
ods is the tight coupling between the database and query. In this article, we introduce a novel
asymmetric hashing method for learning binary hash codes, named Deep Uncoupled Discrete

Hashing (DUDH). The proposed DUDH elaborately designs a similarity-transfer matrix to de-
couple the query from the database, and thus both quantization error and training cost are no
longer related to the size of the database. Specifically, a small similarity-transfer image set is con-
structed by sampling the database, whose code matrix is dubbed the similarity-transfer matrix.
Instead of preserving the similarity between the query and database straightly as in ADSH and
DAGH (upper part in Figure 1), DUDH leverages the similarity-transfer set to bridge the gap be-
tween them. By keeping its similarity to both the query and the database, the underlying semantic
structures are transferred from the database to the query and aligned accordingly, which implic-
itly preserves the similarity between them (lower part in Figure 1). As such, the large similarity
matrix is decomposed into two relatively small ones. As illustrated in Figure 2, both database and
similarity-transfer codes are directly learned, and query codes are generated by the CNN model.
These three parts are guided by the similarity-transfer hashing loss. More specifically, the similar-
ity between the query and similarity-transfer set is preserved by the query-transfer loss, and that

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:3

Fig. 1. Schematic of similarity-transfer matrix. The upper part shows that the query and database in con-

ventional deep asymmetric hashing methods are tightly coupled. The bottom part shows that DUDH adopts

a similarity-transfer matrix to decouple the query and database while implicitly preserving their similari-

ties. n, t ,m denote the size of the database, similarity-transfer set, and query set, respectively (t < m � n).

c denotes the code length.

Fig. 2. Framework of DUDH. Similarity-transfer images are randomly sampled from database images to pre-

serve semantic similarity between query and database images. The binary codes for similarity-transfer and

database images are directly learned during the optimization, while the ones for query images are generated

by the CNN model. Best viewed in color.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:4 D. Wu et al.

between the database and similarity-transfer set is preserved by the database-transfer loss. Note
that the quantization error only exists in the query-transfer loss and is no longer related to the
size of the database. The main contributions can be summarized as follows:

• A similarity-transfer matrix is elaborately designed to bridge the gap between query and
database images. With such matrix, the quantization error and the cost of optimizing the
CNN model can be largely reduced and the semantic similarity between the query and data-
base can be preserved as well. Besides, we further propose to accelerate the optimization of
the similarity-transfer matrix with a constant-approximation solution. As a result, the cost
of optimizing the similarity-transfer matrix can be ignored as well.
• We devise a similarity-transfer hashing loss function by preserving the similarity between

training images. It incorporates a similarity-transfer set to train the hash functions for query
images. Simultaneously, the binary hash codes for the database and similarity-transfer set
can be directly obtained during the optimization.
• Extensive experiments demonstrate that the proposed DUDH can significantly decrease the

training time while achieving state-of-the-art retrieval accuracy.

The rest of this article is organized as follows: Related works are briefly discussed in Section 2.
Section 3 describes DUDH in detail. Section 4 extensively evaluates the proposed method on three
widely used image retrieval datasets. Finally, Section 5 concludes this article.

2 RELATED WORKS

Hashing is an important technique for fast approximate similarity search. Generally speak-
ing, hashing methods can be divided into two categories: data-independent methods and data-
dependent methods. Data-independent methods randomly generate a set of hash functions with-
out any training. Representative data-independent methods include LSH [11] and its variants [35].
However, it has been proven that the LSH method needs long codes to meet the accuracy require-
ment. To generate more compact binary codes, some data-dependent methods are proposed. They
try to learn appropriate hash functions that can well separate the training samples. Existing data-
dependent hashing methods can be further classified into supervised hashing and unsupervised
hashing. Compared with unsupervised hashing methods [12, 43], supervised hashing methods can
leverage the label information to achieve better retrieval performance. Representative supervised
hashing methods include KSH [31], LFH [56], SDH [38], and FDUDH [27].

With the rapid development of deep learning techniques, the deep models have been applied
to hashing approaches, raising the deep hashing methods. In this article, we mainly focus on im-
proving the training efficiency of deep hashing methods. These methods can be summarized into
symmetric deep hashing methods and asymmetric ones. The former methods encode database and
query images into binary codes through the same CNN model, while the latter methods learn two
different deep hash functions for query and database images separately.

Symmetric deep hashing methods have shown great advantages over the hand-crafted
feature-based hashing methods. Convolutional Neural Network Hashing (CNNH) [46] tries
to fit the binary codes computed from the similarity matrix. Deep Supervised Hashing (DSH)

[30] and Deep Pairwise Supervised Hashing (DPSH) [26] are pair-wise label based hashing
methods. Two-stream DH (TSDH) [8] constructs a two-stream ConvNet architecture and learns
hash codes with class-specific centers to minimize the intra-class variation. Deep Supervised Dis-

crete Hashing (DSDH) [24] is the first deep hashing method with discrete optimization. Some
methods further consider more complicated semantic similarity between images [58]. Other meth-
ods [17, 19, 47, 50] focus on learning unified hash codes for different modalities, such as image,
text, and video. The aforementioned deep hashing methods are all supervised methods; i.e., they

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:5

cannot apply to the scenario where label information is unavailable or incomplete. Recently, some
deep unsupervised hashing [7, 9, 28, 39, 49, 51, 53] methods were proposed. Deep binary descrip-

tors (DeepBit) [28] treats original images and their corresponding rotated images as similar pairs
and attempts to preserve such similarities. DistillHash [51] learns a distilled dataset composed of
data pairs that have confident similarity signals. Apart from unsupervised and supervised deep
hashing methods, semi-supervised deep hashing [48, 55] methods also have attracted much atten-
tion. SSDH [55] tries to utilize the unlabeled images through online graph construction. BGDH
[48] constructs a bipartite graph to discover the underlying structure of data, based on which an
embedding is generated for each instance.

Asymmetric deep hashing methods recently showed better retrieval performance than sym-
metric methods. Deep Asymmetric Pairwise Hashing (DAPH) [36] adopts two different CNN
models to generate hash codes for query and database images separately. ADSH [18] learns a CNN
model only for query images and directly learns the binary hash codes for database images. DAGH
[3] is similar to ADSH, and it adopts an anchor graph to benefit the learning of binary codes. ADSH
and DAGH perform better than DAPH in most cases since ADSH and DAGH can efficiently utilize
the supervision. However, ADSH and DAGH still require a large amount of computation during
the optimization.

Several hashing works have exploited the “anchors” for generating feature representation (e.g.,
SDH [38], KSH [31], and GCNH [59]), which shares the form with the proposed similarity-transfer
set that both of them are a subset of the database. However, our similarity-transfer set is funda-
mentally different from them. Anchor-based methods generally employ anchors to learn features
of other points by calculating the distances between the points and anchors. Such process does
not aim to reduce the computation or the quantization error but is more like the feature enhance-
ment. In contrast, the similarity-transfer set in DUDH is treated as a springboard to transfer the
underlying semantic structures from the database to the query, which reduces both computation
cost and quantization error. Meanwhile, the similarities between the query and database are also
implicitly preserved.

Apart from learning a representation where the intra-class distances are minimized and inter-
class distances are maximized, hashing methods need to pay more attention to reducing or avoid-
ing quantization loss during optimization, which is the major difference between deep hashing
methods and deep metric learning methods.

3 DEEP UNCOUPLED DISCRETE HASHING

3.1 Problem Definition

Suppose we have m query images denoted as X = {xi }mi=1, n database images denoted as Y =
{yj }nj=1, and t similarity-transfer images denoted as Z = {zk }tk=1

. The similarity-transfer image set

is simply sampled from the database. Normally, the number of query images is much smaller than
that of database images but much larger than that of similarity-transfer images; i.e., t < m � n.

Ŝ ∈ {−1,+1}m×t denotes the similarity matrix between the query and similarity-transfer set, and

S̃ ∈ {−1,+1}n×t denotes the similarity matrix between the database and similarity-transfer set.

Ŝi j = 1/ − 1 indicates that xi and zj are similar/dissimilar, and S̃i j = 1/ − 1 indicates that yi and zj

are similar/dissimilar. The goal of DUDH is to learn a hash function h(xq) ∈ {−1,+1}c to generate
the binary hash codes U = {ui }mi=1 ∈ {−1,+1}m×c for query images and directly learn the hash
codes V = {vi }ni=1 ∈ {−1,+1}n×c , W = {wi }ti=1 ∈ {−1,+1}t×c for the database and similarity-
transfer set, respectively, where c is the code length. The Hamming distance betweenui/vi andw j

should be as small as possible if Ŝi j/S̃i j = 1; otherwise, the distance should be as large as possible.
The notations and their descriptions are listed in Table 1.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:6 D. Wu et al.

Table 1. Notations and Their Descriptions

Notation Description

m the number of query images

n the number of database images

t the number of similarity-transfer images

c the length of binary hash codes

X X = {xi }mi=1: the set ofm query images

Y Y = {yj }nj=1: the set of n database images

Z Z = {zk }tk=1
: the set of t similarity-transfer images

Ŝ
Ŝ ∈ {−1,+1}m×t : the similarity matrix

between query and similarity-transfer set

S̃
S̃ ∈ {−1,+1}n×t : the similarity matrix

between database and similarity-transfer set

h h(xq) ∈ {−1,+1}c : the deep hash function

U
U = {ui }mi=1 ∈ {−1,+1}m×c :

the binary hash codes of query images

V
V = {vi }ni=1 ∈ {−1,+1}n×c :

the binary hash codes of database images

W
W = {wi }ti=1 ∈ {−1,+1}t×c :

the binary hash codes of similarity-transfer images

3.2 Framework Overview

As illustrated in Figure 2, DUDH has three inputs, i.e., the query images, the similarity-transfer
images, and the database images, respectively. In practice, the query and similarity-transfer set are
generally unavailable. Therefore, we sample two subsets of Y to form X and Z . The supervision

Ŝ and S̃ can be easily obtained given the label of the whole dataset. DUDH contains three core
parts: hash function learning, database code learning, and similarity-transfer code learning. In the
hash function learning part, a deep CNN model is employed to extract representative features for
query images. Deep hash functions are then learned on top of the features to produce the hash
codes U . Note that this module is only applied to the query set. The database code learning part
directly learns the hash codes V for the database, while the similarity-transfer code learning part
learns the codesW for the similarity-transfer set. To achieve the above goals, a similarity-transfer
hashing loss function is devised with U ,V ,W , which implicitly preserves the similarity between
the query and database through the similarity-transfer set. We detail each part in the following
sections.

3.3 Deep Hash Functions

We construct the hash functions through a CNN model, the output of which is a c-dimensional
vector. c is the code length. Accordingly, our deep hash function is defined as

ui = h (xi ;θ) = siдn (f (xi ;θ)), (1)

where θ denotes the parameters of CNN model, and f (·) denotes the output of the CNN model.

3.4 Similarity-Transfer Hashing Loss

DUDH utilizes the similarity-transfer set as a springboard to boost the computation efficiency. It
aims to preserve the similarity of the similarity-transfer set with both the query and the database,

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:7

Fig. 3. Examples of how similarity-transfer images work. The left part shows that if the images (a) and (c) are

both similar to (b), then the similarity between (a) and (c) can be implicitly preserved. The right part shows

that if the image (b) is similar to (a) but dissimilar to (c), then the dissimilarity between (a) and (c) can be

implicitly preserved. Best viewed in color.

rather than preserve the similarity between the query and database directly. As such, the under-
lying semantic structures are transferred from the database to the query and aligned accordingly,
which implicitly preserves the similarity between them. In this way, the necessary large similarity
matrix between the database and query is “decomposed” into two small ones, thus evading the
huge computation overhead. Figure 3 illustrates how similarity-transfer images work. When the
images (a) and (c) are both similar to (b) (the similarity-transfer image), the similarity between (a)
and (c) can be implicitly preserved (left in the figure). In the same way, the dissimilarity between
(a) and (c) can also be preserved through a specific image (b) (right in the figure). The proposed
similarity-transfer hashing loss thus follows the above paradigm to separately optimize the hash
codes, which consists of two components: database-transfer loss and query-transfer loss.

Database-transfer loss tries to preserve the similarity between database and similarity-

transfer images. With the similarity matrix S̃ , the goal is to reduce/enlarge the Hamming distances
between the hash codes of similar/dissimilar pairs. The L2-norm loss is then adopted to minimize
the difference between the supervision and the inner product of binary code pairs, which is given
by

min
V ,W

J (V ,W) =
n∑

i=1

t∑
j=1

(viw
T
j − cS̃i j)

2,

s .t . V = {v1,v2, . . . ,vn } ∈ {−1,+1}n×c ,

W = {w1,w2, . . . ,wt } ∈ {−1,+1}t×c .

(2)

Query-transfer loss aims at preserving the similarity between query and similarity-transfer
images. Similar to the above database-transfer loss, the query-transfer loss can be defined as

min
U ,W

J (U ,W) =
m∑

i=1

t∑
j=1

(uiw
T
j − cŜi j)

2,

s .t . U = {u1,u2, . . . ,um } ∈ {−1,+1}m×c ,

W = {w1,w2, . . . ,wt } ∈ {−1,+1}t×c .

(3)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:8 D. Wu et al.

Note that ui is obtained through the CNN model. We integrate Equation (1) into Equation (3) and
reformulate the loss function as follows:

min
θ,W

J (θ ,W) =
m∑

i=1

t∑
j=1

[siдn (f (xi ;θ))wT
j − cŜi j]

2,

s .t . W = {w1,w2, . . . ,wt } ∈ {−1,+1}t×c .

(4)

It should be noted that Equation (4) is in general NP-hard since the function siдn (·) is not differen-
tiable at 0. We adopt a common continuous relaxation to replace the siдn (·) with tanh (·) function,
which brings new formulations as

min
θ,W

J (θ ,W) =
m∑

i=1

t∑
j=1

[tanh (f (xi ;θ))wT
j − cŜi j]

2,

s .t . W = {w1,w2, . . . ,wt } ∈ {−1,+1}t×c .

(5)

As aforementioned, both query and similarity-transfer set images are sampled from the database.
Let Ψ = {1, 2, 3, . . . ,n} denote the indices of database images, Ω = {1, 2, 3, . . . ,m} the indices of
query images, and Φ = {1, 2, 3, . . . , t } the indices of similarity-transfer images. Combining the
above database-transfer loss and query-transfer loss, we can finally formulate similarity-transfer

hashing loss as

min
θ,W ,V

J (θ ,W ,V) =
∑
i ∈Ψ

∑
j ∈Φ

[viw
T
j − cS̃i j]

2

+ λ
∑
i ∈Ω

∑
j ∈Φ

[tanh (f (xi ;θ))wT
j − cŜi j]

2

+ γ
∑
i ∈Ω

[vi − tanh (f (xi ;θ))]2,

s .t . V = {v1,v2, . . . ,vn } ∈ {−1,+1}n×c ,

W = {w1,w2, . . . ,wt } ∈ {−1,+1}t×c ,

(6)

where λ, γ are two hyper-parameters. It is worth noting that we further add a constraint∑
i ∈Ω[vi − tanh (f (xi ;θ))]2. This is because each image xi in the query set possesses two kinds

of code representations: one is the learned binary hash codes vi from the database, and the other
is the representation tanh (f (xi ;θ)) from the CNN model. By minimizing the difference between
them, we hope the two representations can be consistent.

3.5 Optimization

We design an alternating optimization strategy to learn the parameters θ , V , and W in
Equation (6). More specifically, in each iteration we learn one parameter with the other two fixed.
The three steps are repeated for several iterations.

3.5.1 θ -step. When V and W are fixed, we use the standard back-propagation algorithm to
optimize θ . For simplicity, we denote pi = tanh(f (xi ;θ)) and qi = f (xi ;θ). The partial derivative
of J (θ ,V ,W) with respect to qi is

∂J

∂qi
= 2

(
λ
∑
j ∈Φ

[(piw
T
j − cŜi j)w j]

+ γ (pi −vi)
)
· (1 − pi · pi),

(7)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:9

where 1 denotes the all-ones vector, and (·) means the element-wise multiplication operation be-
tween two vectors. Then we can use the chain rule to update θ .

3.5.2 V -step. When θ is fixed, it is not straightforward to update V . We first rewrite
Equation (6) into the following matrix form:

min
V

J (V) = | |VW T − cS̃ | |2F + γ | |VΩ − P | |2F

= | |VW T | |2F − 2ctr (VW T S̃T)

− 2γtr (VΩP
T) + const ,

s .t . V ∈ {−1,+1}n×c ,

(8)

where P = {pi |i ∈ Ω} ∈ [−1,+1]m×c and VΩ is the binary hash codes of the database images
indexed by Ω, i.e., VΩ = {vi |i ∈ Ω} ∈ {−1,+1}m×c . “const” is a constant independent of V . To

simplify Equation (8), we newly define P̃ = {p̃i |i ∈ Ψ} ∈ [−1,+1]n×c , where p̃i is defined as

p̃i =
⎧⎪⎨
⎪
⎩

pi , i ∈ Ω,

0, otherwise,
(9)

and Equation (8) can be rewritten as follows:

min
V

J (V) = | |VW T | |2F − 2tr (V (cW T S̃T + γ P̃T)),

= | |VW T | |2F + tr (VQT),

s .t . V ∈ {−1,+1}n×c ,

(10)

where Q = −2cS̃W − 2γ P̃ . Note that the constant term in Equation (8) is omitted for simplicity.
Then we adopt the discrete cyclic coordinate descent (DCC) algorithm proposed in [38] to
solve Equation (10). Specifically, we update V bit by bit, which means each time we update one
column of V with other columns fixed. We denote V∗l as the lth column of V (l = 1, . . . , c) and
V̂l as the matrix of V excluding V∗l . For W , let W∗l be the lth column of W and Ŵl be the matrix

of W excluding W∗l . Similarly, let Q∗l denote the lth column of Q and Q̂l denote the matrix of Q
excluding Q∗l . Therefore, Equation (10) can be transformed to

min
V∗l

J (V∗l) = | |VW T | |2F + tr (VQT),

= tr (V∗l [2W
T
∗lŴlV̂l

T
+ Q̂l

T
]),

s .t . V∗l ∈ {−1,+1}n .

(11)

Obviously, when the sign of each bit in V∗l is different from that of the corresponding bit in

2W T
∗lŴlV̂l

T
+ Q̂l

T
, J (V∗l) can reach its minimum value. Therefore, the solution to Equation (11)

is as follows:

V∗l = −siдn(2V̂lŴl
T
W∗l + Q̂l). (12)

We then update V by replacing the lth column of V with V∗l . Accordingly, all columns of V are
updated sequentially by repeating Equation (12).

3.5.3 W -step. Given the fixed θ and V , the objective in Equation (6) can be rewritten into the
formulation of

min
W

J2 (W) = | |VW T − cS̃ | |2F + λ | |PW
T − cŜ | |2F ,

s .t . W ∈ {−1,+1}t×c .
(13)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:10 D. Wu et al.

ALGORITHM 1: The learning algorithm for DUDH

Input: database set Y ; code length c; iteration number Ti ; epoch number Te .

Output: database hash codes V , similarity-transfer hash codesW , and neural network parameter θ .

Initialize V ∈ {−1,+1}n×c and neural network parameter θ .

for i = 1→Ti do
Randomly sample t images from Y and initializeW = VΦ ∈ {−1,+1}t×c .

Randomly samplem images from Y to form query set X .

for j = 1→Te do
1. Forward computation to compute f (x ;θ) in mini-batch;

2. Compute derivation according to Equation (7);

3. Update the neural network θ by utilizing back propagation.
end

UpdateW according to Equation (15).

Update V according to Equation (12).
end

Different from θ and V , we optimize W in a discrete way, where the error of the solution is
proven to be bounded. Let’s first consider the following problem, which changes Equation (13) from
Frobenius norm to L1-norm:

min
W

J1 (W) = | |VW T − cS̃ + λ(PW T − cŜ) | |1

= | |(V + λP)W T − c (S̃ + λŜ) | |1,
s .t . W ∈ {−1,+1}t×c ,

(14)

where P ∈ [−1,+1]n×c and Ŝ ∈ {−1,+1}n×t . The first m rows of P are the same as P , and the

remaining elements are all zeros. Similarly, elements in the firstm rows of Ŝ are the same as Ŝ , and
the rest are all zeros.

The solution of Equation (14) can be simply found as

W = siдn((S̃ + λŜ)T (V + λP)). (15)

Furthermore, we have the following theorem.

Theorem 3.1. Suppose that J1 (W) and J2 (W) reach their minimum at the points W ∗
1 and W ∗

2 ,

respectively. We have J2 (W ∗
1) ≤ 2c J2 (W ∗

2) + (1
2c + 8c2)λmt .

The proof of Theorem 3.1 can be found in the appendix. Note that the parameters c, λ,m, t are all
constants and usually small. In other words, when we utilize Equation (15) to solve Equation (13),
the solution is a constant-approximation solution, which provides an error bound for
Equation (13). Finally, the entire learning algorithm of DUDH is summarized in Algorithm 1.

3.6 Analysis on Quantization Error and Computational Complexity

The quantization error of DUDH only exists in the query-transfer loss, and its value is no longer
related to the size of the database. For ADSH, as the query is tightly coupled with the database,
its quantization error is proportional to the size of the database. Compared with ADSH, the quan-
tization error of DUDH can be significantly reduced. The computational cost for training DUDH
comprises three parts: one for optimizing θ , one for optimizingW , and one for optimizingV . Specif-
ically, the training complexity is O (TiTemtc) for optimizing θ , O (Tintc) forW , and O (Tintc

2) for
V . Here Ti is the iteration number, and Te is the network epoch number in each iteration. On the

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:11

Table 2. Comparison of Computational Complexity

Methods θ W V

ADSH O (TiTemnc) - O (Tinmc2)
DUDH O (TiTemtc) O (Tintc) O (Tintc

2)

other hand, the complexity of ADSH is O (TiTemnc) for optimizing θ , and O (Timnc2) forV . Gener-
ally, optimizing θ andV costs much more time than optimizingW . In comparison with ADSH, the
complexity of DUDH for optimizing θ is much lower because t � n, which indicates that the net-
work optimization cost is simply proportional to the size of the similarity-transfer set. Besides, the
complexity of DUDH for optimizing V is also lower because t < m. Therefore, though additional
optimization for W is exhibited, DUDH is still much more efficient than ADSH. The comparison
of computational complexity is listed in Table 2.

4 EXPERIMENTS

4.1 Evaluation Setup

4.1.1 Datasets. We conduct extensive evaluations of our proposed method DUDH on four
widely used datasets, CIFAR-10 [22], SVHN [33], NUS-WIDE [4], and MS-COCO [29].

• CIFAR-101 consists of 60,000 single-label color images in 10 classes. Each class contains
6,000 images of size 32×32. For CIFAR-10, two images will be treated as a similar pair if they
share one common label.
• SVHN2 consists of 73,257 training images and 26,032 testing images. The images are cate-

gorized into 10 classes, each corresponding to a digital number. For SVHN, two images are
similar if they share the same label.
• NUS-WIDE3 contains 269,648 multi-label web images collected from Flickr. The association

between images and 81 concepts is manually annotated. Following [30, 60], we only select the
images associated with the 21 most frequent concepts (labels), where each of these concepts
(labels) associates with at least 5,000 images, resulting in a total of 195,834 images. For NUS-
WIDE, two images will be defined as a similar pair if they share at least one common label.
• MS-COCO4 is a multi-label dataset. It contains 82,783 training images and 40,504 validation

images, which belong to 80 classes. Two images are similar if they share at least one common
label.

For CIFAR-10, we randomly select 1,000 images (100 images per class) as the query set, with the
remaining images as database images. For SVHN, we randomly select 1,000 images (100 images
per class) from the testing set as the query set and utilize the whole training set as the retrieval
set. Similarly, for NUS-WIDE, we randomly choose 2,100 images (also 100 images per class) as the
query set, leaving the rest as the database. For MS-COCO, we randomly sample 5,000 images as
the query set, and the rest of the images are used as the training and gallery images.

4.1.2 Comparison Methods. We compare DUDH with both traditional and deep hashing meth-
ods. For traditional approaches, we compare with LSH [11] and ITQ [12] from unsupervised hash-
ing, and FASTH [27], LFH [56], SDH [38], and COSDISH [21] from supervised hashing. The deep
hashing methods include DSH [30], DHN [60], DIHN [44], ADSH [18], JLDSH [13], and CSQ [52].

1http://www.cs.toronto.edu/~kriz/cifar.html.
2http://ufldl.stanford.edu/housenumbers/.
3http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm.
4https://cocodataset.org/.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

http://www.cs.toronto.edu/~kriz/cifar.html
http://ufldl.stanford.edu/housenumbers/
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
https://cocodataset.org/

22:12 D. Wu et al.

Table 3. Comparison of MAP w.r.t. Different Number of Bits on Three Datasets

Methods
CIFAR-10 NUS-WIDE SVHN

12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

LSH [11] 0.147 0.173 0.180 0.193 0.341 0.351 0.351 0.371 0.107 0.108 0.109 0.111
ITQ [12] 0.258 0.273 0.283 0.294 0.505 0.504 0.503 0.505 0.111 0.114 0.115 0.116

FDUDH [27] 0.620 0.673 0.687 0.716 0.741 0.783 0.795 0.809 0.251 0.296 0.318 0.344
LFH [56] 0.401 0.605 0.657 0.700 0.705 0.759 0.778 0.794 0.193 0.256 0.284 0.325
SDH [38] 0.520 0.646 0.658 0.669 0.739 0.762 0.770 0.772 0.151 0.300 0.320 0.334

COSDISH [21] 0.609 0.683 0.696 0.716 0.730 0.764 0.787 0.800 0.238 0.295 0.320 0.341

DSH [30] 0.646 0.749 0.786 0.811 0.762 0.794 0.797 0.808 0.370 0.480 0.523 0.583
DHN [60] 0.673 0.711 0.705 0.714 0.790 0.810 0.809 0.818 0.380 0.410 0.416 0.430
ADSH [18] 0.890 0.928 0.931 0.939 0.840 0.878 0.895 0.906 0.797 0.890 0.912 0.919
DIHN [44] 0.892 0.927 0.933 0.940 0.835 0.882 0.900 0.902 0.790 0.887 0.913 0.915
CSQ [52] 0.937 0.941 0.952 0.947 0.840 0.886 0.887 0.886 0.903 0.919 0.927 0.935

JLDSH [13] 0.877 0.933 0.933 0.942 0.840 0.888 0.900 0.910 0.796 0.880 0.895 0.886
DUDH (Ours) 0.938 0.942 0.943 0.948 0.863 0.894 0.900 0.906 0.895 0.922 0.929 0.941

The best results for MAP are shown in bold.

Note that JLDSH, DIHN, and ADSH are asymmetric deep hashing methods. JLDSH and DIHN are
inherited from ADSH.

4.1.3 Implementation Details. Following [16, 18], we adopt the CNN-F model [2] as the basic
network architecture for both DUDH and all the other deep hashing approaches. This CNN archi-
tecture has five convolutional layers and two FC layers. For traditional (non-deep) methods, we
utilize the 4,096-dim deep features extracted from the CNN-F model pre-trained on ImageNet. In
addition, we set m = 2,000 for ADSH, JLDSH, and DUDH by cross-validation. In view of both
computation cost and retrieval accuracy, we set t = 100 for CIFAR-10/SVHN and t = 1,000 for
NUS-WIDE/MS-COCO. For DIHN, we randomly select three classes as incremental classes, and
we follow [44] that adopts ADSH to train the base model. Note that ADSH, DIHN, JLDSH, and
DUDH are all trained on the whole databases for a fair comparison.

4.1.4 Evaluation Metrics. We report the Mean Average Precision (MAP) to evaluate the over-
all retrieval performance of DUDH and baselines. MAP is widely used in image retrieval evaluation,
which includes the mean of the average precision values obtained from the top returned samples.
Following [18, 30, 44], the MAP results for NUS-WIDE are calculated based on the top-5k returned
samples. Additionally, we evaluate the performance from other aspects, including the top-k preci-
sion and precision-recall curve. Note that DUDH also aims to decrease the training cost. Therefore,
we also compare the training time of several deep hashing methods, including the detailed training
time for optimizing θ ,W , and V .

4.1.5 Experimental Environment. All of our proposed approaches are implemented on the Mat-
ConvNet [41] framework. We carry out the experiments on NVIDIA RTX 2080Ti.

4.2 Accuracy Comparison

4.2.1 Comparison of Retrieval Accuracy. Table 3 shows the MAP performance comparisons on
three datasets. As shown in the table, the most competitive methods are JLDSH, ADSH, and DIHN.
Among these three methods, ADSH-based methods (ADSH, DIHN, and JLDSH) are more competi-
tive. DUDH performs the best in most cases. We also report the performance of the top-k precision
and precision-recall curve with 24 bits on three datasets. As shown in Figure 4, DUDH achieves the
best performance in all cases on CIFAR-10 and SVHN, which is consistent with the MAP results.
For NUS-WIDE, DUDH achieves the best top-k performance for smallk . Whenk gets larger, DUDH

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:13

Fig. 4. Performance of top-k precision on three datasets. The code length is 24. Best viewed in color.

Fig. 5. Performance of precision-recall curve on three datasets. The code length is 24. Best viewed in color.

is a little inferior to JLDSH. For the precision-recall curve, as shown in Figure 5, it is interesting
to observe that the precisions of DUDH, JLDSH, ADSH, and DIHN increase with the increasing of
recalls on CIFAR-10 and SVHN, which is different from the normal precision-recall curves. This
indicates that the three methods may only fail on some extremely hard negative examples. Similar
to the top-k and MAP performance, DUDH can achieve the best precision-recall performance on
CIFAR-10 and SVHN, while being a little inferior to ADSH and JLDSH in certain cases on NUS-
WIDE. In general, the proposed DUDH can achieve the best accuracy performance in all cases
on CIFAR-10 and SVHN and competitive accuracy performance on NUS-WIDE. Meanwhile, the
training cost of our DUDH can be largely reduced, which will be discussed later.

4.2.2 DUDH vs. ADSH. For CIFAR-10 and SVHN, DUDH performs better than ADSH-based
methods in all cases. The reason lies in the fact that the quantization error of DUDH is much
smaller than that of ADSH-based methods. Due to the tight coupling between the query and data-
base, the quantization errors of ADSH-based methods are directly related to the size of the simi-
larity matrix between the database and query (m × n). However, the quantization error of DUDH
is only related to the size of the similarity matrix between the query and similarity-transfer set
(m × t). Meanwhile, DUDH can implicitly preserve similarity between database and query through
the similarity-transfer set, which is achieved by keeping its similarity to both the database and the
query. For NUS-WIDE, DUDH achieves a comparative performance with ADSH. The reason is that
NUS-WIDE is a multi-label dataset, in which the similarities are more complex. Thus, a higher stan-
dard for the selection of the similarity-transfer set is demanded.

4.2.3 DUDH vs. CSQ. We further compare DUDH with the Hadamard-matrix-based method
CSQ [52] in the aspect of MAP and training time. For MAP, as listed in Table 3, DUDH is superior to

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:14 D. Wu et al.

Table 4. Comparison of MAP and Training Time on MS-COCO

Methods
MAP Training Time

12 bits 24 bits 32 bits 48 bits θ W V Total MAP

CSQ [52] 0.744 0.844 0.872 0.886 - - - 512.1 0.886

CSQ- 1
2 0.690 0.787 0.809 0.828 - - - 347.9 0.828

CSQ- 1
8 0.635 0.729 0.755 0.769 - - - 57.9 0.769

CSQ- 1
16 0.605 0.693 0.724 0.738 - - - 9.6 0.738

DUDH(Ours) 0.871 0.899 0.901 0.910 19.5 0.04 0.06 23.6 0.910

For the training time, the code length is 48. CSQ- 1
2 /

1
8 /

1
16 denotes CSQ trained with 1

2 /
1
8 /

1
16

training images.

Fig. 6. Impact of the size of similarity-transfer set on MAP. The code length is 24.

CSQ in most cases. More specifically, DUDH gains obvious advantages on the NUS-WIDE dataset.
For CIFAR-10 and SVHN, DUDH is a little inferior to CSQ in a few cases. For training time, as listed
in Table 5, DUDH can achieve better retrieval performance using much less training time. Table 4
shows the comparison results on MS-COCO. DUDH shows much better retrieval performance than
CSQ on MS-COCO. Meanwhile, the training efficiency of DUDH is much higher than that of CSQ.
Besides, with the decreasing number of training images, though CSQ may cost less training time
(still much slower than DUDH), the gap between the two methods is getting wider as well.

4.2.4 Impact of the Size of Similarity-Transfer Set. To evaluate the impact of the size of the
similarity-transfer matrix on retrieval accuracy, we plot the MAP results of DUDH with different
values of t in Figure 6. For CIFAR-10 and SVHN, the size of the similarity-transfer matrix almost
has no impact on the retrieval performance. More specifically, when the size of the similarity-
transfer matrix is small, e.g., t = 100, DUDH can still achieve competitive retrieval performance.
For NUS-WIDE, the MAP value improves with the increasing of the size of the similarity-transfer
set at first and then stays stable. Therefore, it requires more similarity-transfer images for DUDH
to preserve semantic similarity between images in NUS-WIDE than those in CIFAR-10 and SVHN.
It is because the semantic similarities between images in CIFAR-10 and SVHN are much simpler
than the ones in NUS-WIDE.

4.3 Time Complexity

4.3.1 Comparison of Training Costs. Our other contribution is to accelerate the hash code learn-
ing process. Therefore, we further compare the training costs of DUDH with other deep hashing
methods. Table 5 displays the detailed computation costs of the six methods on three datasets with
48 bits. Note that the training time of DIHN includes the one for base model training and the one
for incremental learning. Both W and V are updated on GPU. In general, DUDH shows the best
training efficiency, while ADSH is the second best, which is consistent with the computational
complexity analysis in Section 3.6.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:15

Table 5. Comparison of Training Time (in Minutes) for Different Variables on Three Datasets with 48 Bits

Methods
CIFAR-10 NUS-WIDE SVHN

θ W V Total MAP θ W V Total MAP θ W V Total MAP

ADSH [18] 20.1 - 2.3 23.7 0.939 36.2 - 15.3 56.1 0.906 21.5 - 3.2 26.5 0.919
DIHN [44] 20.2 - 2.4 23.9 0.940 36.3 - 16.1 57.3 0.902 22.2 - 3.1 27.3 0.915
CSQ [52] - - - 92.2 0.947 - - - 309.8 0.886 - - - 515.2 0.935

JLDSH [13] 20.2 - - 26.1 0.942 36.5 - - 58.4 0.910 21.8 - 3.1 29.0 0.886
DUDH(Ours) 15.1 0.004 0.06 15.3 0.948 16.1 0.07 0.4 24.1 0.906 15.3 0.003 0.05 15.7 0.941

W and V are updated on GPU.

Fig. 7. Comparison of the training time (in minutes) among asymmetric deep hashing methods on three

datasets. The four sub-figures in each row show the training time on the same dataset with different code

length. Best viewed in color.

For example, it takes only about 24 minutes for DUDH to achieve promising performance on
NUS-WIDE. In contrast, ADSH costs more than two times (56 minutes) as much as DUDH to reach
the similar retrieval accuracy. The main advantage of DUDH lies in the process of optimizing θ
andV . For example, it only takes 0.4 minutes for DUDH to optimizeV , while it costs 15.3 minutes
for ADSH to complete it. Besides, the training cost forW is very little. Therefore, the overhead for
learning the similarity-transfer matrix can almost be ignored. For DUDH, the training time for θ is
longer related to the size of database n, which can drastically reduce the training costs especially
for large datasets. Besides, the training time forV is proportional to the size of similarity-transfer
set t instead of the size of query setm, which can also contribute to the reduction of training cost
since t < m.

To further prove the superiority of DUDH, we compare the training costs between DUDH and
the three most competitive methods, i.e., JLDSH, DIHN, and ADSH. As shown in Figure 7, DUDH

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:16 D. Wu et al.

Table 6. Comparison of Training Time (in Minutes) for Different Variables with CPU

on Three Datasets with 48 Bits

Methods
CIFAR-10 NUS-WIDE SVHN

W V T W V T W V T

ADSH [18] - 52.1 72.9 - 218.9 264.8 - 67.8 90.8
DIHN [44] - 53.2 73.4 - 220.2 266.3 - 68.2 91.4
JLDSH [13] - 53.8 78.7 - 221.4 273.3 - 69.9 97.3

DUDH (Ours) 0.02 3.2 19.1 0.4 103.9 124.6 0.02 3.75 19.6

can gain obvious advantages in all cases. It clearly shows that the training cost forW is very little
under all circumstances, which means the optimization cost for W can be ignored. As expected,
the advantages of DUDH are more obvious with the increasing length of hash codes. In summary,
the optimization cost produced by similar-transfer setW can be ignored, while the cost for θ and
V can be largely reduced.

4.3.2 Differences between Optimizing with GPU and CPU. Table 6 shows the training time for
W andV with GPU/CPU on three datasets with 48 bits. Note that it is time consuming to optimize
θ with CPU. Therefore, we only discuss W and V here. Generally, it takes much more time for
JLDSH, ADSH, DIHN, and DUDH to update V and W on CPU than on GPU. The advantages of
DUDH become much more obvious when training with CPU. For example, on CIFAR-10, ADSH
costs about four times (72.9 minutes) as much as DUDH to reach the similar retrieval accuracy. On
SVHN, ADSH costs about five times (90.8 minutes) as much as DUDH to converge, and its retrieval
performance on SVHN is also worse than that of DUDH. An interesting observation is that it costs
less time to train DUDH with CPU than to train ADSH/DIHN with GPU on CIFAR-10 and SVHN.
Besides, though it takes additional time for DUDH to optimizeW with CPU, the training cost for
W is still negligible, which can further prove the superiority of DUDH.

4.3.3 Impact of the Size of Similarity-Transfer Set. Figure 8 shows the training time of DUDH
when the size ofW varies. In general, with the increasing value of t , the training time for optimizing
W ,V , and θ increases accordingly, which is consistent with the computational complexity listed in
Table 2. Specifically, when optimizingV with CPU, with the increasing value of t , the training time
for optimizingV rises notably. When optimizingV with GPU, the training cost ofV is dramatically
reduced, which is much less than the training cost of θ . For W , its training cost can almost be
ignored no matter whether it is optimized with GPU or CPU.

4.3.4 MAP Comparison When Training Time Is Similar. We further conduct experiments that
reduce the number of training or query images for ADSH-based methods (JLDSH, ADSH, and
DIHN) to make them have a similar training time as DUDH. Table 7 shows the comparison of MAP
on three datasets with 48 bits when the training time is similar by reducing the number of training
images. Specifically, we randomly select a subset of database images as the training images. After
the training process, we adopt the CNN model to generate hash codes for database images, which is
different from the original settings. As listed in the table, the training time of ADSH-based methods
can drop to a similar level as DUDH when using only a quarter of database images. However,
the performances of existing methods also drop significantly accordingly, and DUDH can achieve
much better retrieval performance with similar training time. Table 8 shows the comparison of
MAP on three datasets with 48 bits when the training time is similar by reducing the number of
sampled query images. Specifically, we reduce the number of query images sampled from database
images. Similar to the previous results, DUDH can achieve the best retrieval performance while

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:17

Fig. 8. Comparison of the training time (in minutes) for different variables when t varies on three datasets.

The four sub-figures in each row show the training time on three datasets when optimizing W and V with

CPU/GPU. Best viewed in color.

Table 7. Comparison of MAP on Three Datasets with 48 Bits When Training Time Is

Similar by Reducing the Number of Training Images

Methods
CIFAR-10 NUS-WIDE SVHN

sr time MAP sr time MAP sr time MAP

ADSH [18] 0.25 17.5 0.925 0.25 24.3 0.809 0.25 18.2 0.864
DIHN [44] 0.25 17.3 0.922 0.25 24.6 0.812 0.25 17.9 0.871
JLDSH [13] 0.25 18.5 0.935 0.25 25.7 0.823 0.25 19.7 0.832

DUDH(Ours) 1 15.3 0.948 1 24.1 0.906 1 15.7 0.941

W and V are updated on GPU. sr denotes sampling rate.

using the least time. However, the performance gap between ADSH-based methods and DUDH has
narrowed compared to Table 7. The reason is that the database hash codes in the former experiment
have to be generated by the CNN model, thus leading to the larger quantization errors. In contrast,
the database hash codes in latter experiment are directly learned in the optimization process and
the quantization errors are smaller.

4.4 Parameter Sensitivity

Figure 9 shows the performance of DUDH on three datasets with different parameters. We tune
one parameter with the other two fixed. More specifically, on CIFAR-10 and SVHN, we tune λ in
the range of [1, 2, 3, 4, 5] by fixing t = 100 and γ = 20, respectively. On NUS-WIDE, we tune λ in
the range of [1, 2, 3, 4, 5] by fixing t = 1,000 and γ = 20, respectively. Similarly, we set λ = 5 and
γ = 20 when tuning t . For γ , on CIFAR-10 and SVHN, we tune γ in the range of [1, 5, 10, 15, 20]
by fixing t = 100 and λ = 5. On NUS-WIDE, we tune γ in the range of [1, 5, 10, 15, 20] by fixing
t = 1,000 and λ = 5. As shown in the figure, DUDH obtains stable performance when the values of

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:18 D. Wu et al.

Table 8. Comparison of MAP on Three Datasets with 48 Bits When Training Time Is Similar

by Reducing the Number of Query Images

Methods
CIFAR-10 NUS-WIDE SVHN

m time MAP m time MAP m time MAP

ADSH [18] 1500 17.6 0.930 1000 25.1 0.881 1200 16.4 0.910
DIHN [44] 1500 17.3 0.926 1000 25.6 0.878 1200 16.5 0.912
JLDSH [13] 1500 19.8 0.933 1000 27.1 0.889 1200 18.5 0.870

DUDH(Ours) 2000 15.3 0.948 2000 24.1 0.906 2000 15.7 0.941

W and V are updated on GPU.

Fig. 9. MAPs versus the variations of λ, γ , and t on three datasets. The code length is 48.

γ and λ vary. For t , on CIFAR-10 and SVHN, it has almost no impact on MAP. On NUS-WIDE, the
MAP value improves with the increasing of t , which is consistent with the results aforementioned.

5 CONCLUSIONS

In this article, we propose a novel asymmetric deep hashing method, namely DUDH, for large-scale
image retrieval. Different from the tight coupling between query and database in conventional
asymmetric deep hashing methods, DUDH adopts a similarity-transfer matrix to decouple the
query from the database. As a result, both the quantization error and the cost of optimizing the
CNN model in our DUDH are no longer related to the size of the database and can be largely
reduced. Meanwhile, the training cost for optimizing similarity-transfer codes can be ignored with
the proposed constant-approximation optimization solution. Extensive experiments demonstrate
that DUDH can achieve state-of-the-art performance with much less training cost.

APPENDIX

A PROOF OF THE THEOREM 3.1

First, let’s consider the following problem:

min
W

J3 (W) = | |VW T − cS̃ | |1 + λ | |PW T − cŜ | |1,

s .t . W ∈ {−1,+1}t×c .
(16)

Suppose that J3 (W) reaches its minimum at the point W ∗
3 . We will first prove that J2 (W ∗1) ≤

2c J3 (W ∗
1):

J2 (W ∗
1) = | |VW ∗T

1 − cS̃ | |2F + λ | |PW
∗T

1 − cŜ | |2F ,

= c2

(
����
����
1

c
VW ∗T

1 − S̃
����
����

2

F
+ λ

����
����
1

c
PW ∗T

1 − Ŝ
����
����

2

F

)
.

(17)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:19

Since all elements of V ,W , Ŝ, S̃ , and P are in [−1,+1], we have 1
c
VW ∗T

1 − S̃ ∈ [−2,+2]n×t and
1
c
PW ∗T

1 − Ŝ ∈ [−2,+2]m×t . Hence:

����
����
1

c
VW ∗T

1 − S̃
����
����

2

F
+ λ

����
����
1

c
PW ∗T

1 − Ŝ
����
����

2

F
(18)

≤ 2
(����
����
1

c
VW ∗T

1 − S̃
����
����1
+ λ

����
����
1

c
PW ∗T

1 − Ŝ
����
����1

)
. (19)

Then we have

J2 (W ∗
1) ≤ 2c

(
c
����
����
1

c
VW ∗T

1 − S̃
����
����1
+ cλ

����
����
1

c
PW ∗T

1 − Ŝ
����
����1

)

= 2c J3 (W ∗1).
(20)

Recall that

J1 (W) = | |VW T − cS̃ + λ(PW T − cŜ) | |1. (21)

Then we will prove J3 (W ∗
1) ≤ J1 (W ∗

1) + 4cλmt .
It is easy to get

| |VW T − cS̃ | |1 + λ | |PW T − cŜ | |1
≤ ||VW T − cS̃ + λ(PW T − cŜ) | |1 + 2| |λ(PW T − cŜ) | |1

(22)

and
| |(PW T − cŜ) | |1 ≤ 2cmt

2| |λ(PW T − cŜ) | |1 ≤ 4cλmt .
(23)

Combining Equations (22) and (23), we can get

J3 (W ∗
1) ≤ J1 (W ∗

1) + 4cλmt . (24)

Then, combining Equations (20) and (24), we have

J2 (W ∗
1) ≤ 2c J3 (W ∗

1) ≤ 2c J1 (W ∗
1) + 8c2λmt ,

≤ 2c J1 (W ∗
2) + 8c2λmt ,

≤ 2c J3 (W ∗
2) + 8c2λmt .

(25)

Next, we will prove J3 (W ∗
2) ≤ J2 (W ∗

2) + 1
4λmt .

Since all the elements in VW ∗T
2 − cS̃ are all integer value, it is easy to have

| |VW ∗T
2 − cS̃ | |1 ≤ ||VW ∗T

2 − cS̃ | |2F . (26)

For the elements in PW ∗T
2 − cŜ the values of which are in [−1, 1] (assume they are indexed by ψ),

we will prove

| |(PW ∗T
2 − cŜ)ψ | |1 ≤ ||(PW ∗T

2 − cŜ)ψ | |2F +
1

4
|ψ |, (27)

where |ψ | denotes the size ofψ .
First, considering the following function:

f (x) = −x2 + x , (28)

when x = 1
2 , f (x) reaches its maximum value 1

4 . Then we can easily prove Equation (27).
Then we have

λ | |(PW ∗T
2 − cŜ)ψ | |1 ≤ λ | |(PW ∗T

2 − cŜ)ψ | |2F +
1

4
λ |ψ |,

≤ λ | |(PW ∗T
2 − cŜ)ψ | |2F +

1

4
λmt .

(29)

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:20 D. Wu et al.

For the left elements in PW ∗T
2 − cŜ (assume they are indexed by ϕ), we have

λ | |(PW ∗T
2 − cŜ)ϕ | |1 ≤ λ | |(PW ∗T

2 − cŜ)ϕ | |2F . (30)

Combining Equations (26), (29), and (30), we can get

J3 (W ∗
2) ≤ J2 (W ∗

2) +
1

4
λmt . (31)

Finally, combining Equations (25) and (31), we have

J2 (W ∗
1) ≤ 2c J3 (W ∗

2) + 8c2λmt ,

≤ 2c J2 (W ∗
2) +

(
1

2
c + 8c2

)
λmt .

(32)

REFERENCES

[1] Yue Cao, Mingsheng Long, Jianmin Wang, Han Zhu, and Qingfu Wen. 2016. Deep quantization network for efficient

image retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence. 3457–3463.

[2] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. 2014. Return of the devil in the details:

Delving deep into convolutional nets. In Proceedings of the British Machine Vision Conference.

[3] Yudong Chen, Zhihui Lai, Yujuan Ding, Kaiyi Lin, and Wai Keung Wong. 2019. Deep supervised hashing with anchor

graph. In Proceedings of the IEEE International Conference on Computer Vision. 9795–9803.

[4] Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao Zheng. 2009. NUS-WIDE: A real-

world web image database from National University of Singapore. In Proceedings of the ACM International Conference

on Image and Video Retrieval.

[5] Hui Cui, Lei Zhu, Jingjing Li, Yang Yang, and Liqiang Nie. 2019. Scalable deep hashing for large-scale social image

retrieval. IEEE Transactions on Image Processing 29 (2019), 1271–1284.

[6] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao. 2018. Triplet-based deep hashing network for cross-modal retrieval. IEEE

Transactions on Image Processing 27, 8 (2018), 3893–3903.

[7] Cheng Deng, Erkun Yang, Tongliang Liu, Jie Li, Wei Liu, and Dacheng Tao. 2019. Unsupervised semantic-preserving

adversarial hashing for image search. IEEE Transactions on Image Processing 28, 8 (2019), 4032–4044.

[8] Cheng Deng, Erkun Yang, Tongliang Liu, and Dacheng Tao. 2019. Two-stream deep hashing with class-specific centers

for supervised image search. IEEE Transactions on Neural Networks and Learning Systems 31, 6 (2019), 2189–2201.

[9] Kamran Ghasedi Dizaji, Feng Zheng, Najmeh Sadoughi, Yanhua Yang, Cheng Deng, and Heng Huang. 2018. Unsu-

pervised deep generative adversarial hashing network. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition. 3664–3673.

[10] Thanh Toan Do, Anh Dzung Doan, and Ngai Man Cheung. 2016. Learning to hash with binary deep neural network.

In Proceedings of the European Conference on Computer Vision. 219–234.

[11] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity search in high dimensions via hashing. In Proceed-

ings of the International Conference on Very Large Data Bases. 518–529.

[12] Yunchao Gong and Svetlana Lazebnik. 2011. Iterative quantization: A procrustean approach to learning binary codes.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 817–824.

[13] Guanghua Gu, Jiangtao Liu, Zhuoyi Li, Wenhua Huo, and Yao Zhao. 2020. Joint learning based deep supervised hashing

for large-scale image retrieval. Neurocomputing 385 (2020), 348–357.

[14] Tao He, Yuan-Fang Li, Lianli Gao, Dongxiang Zhang, and Jingkuan Song. 2019. One network for multi-domains:

Domain adaptive hashing with intersectant generative adversarial networks. In Proceedings of the International Joint

Conference on Artificial Intelligence. 2477–2483.

[15] Xiangyu He, Peisong Wang, and Jian Cheng. 2019. K-Nearest neighbors hashing. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition. 2839–2848.

[16] Qing-Yuan Jiang, Xue Cui, and Wu-Jun Li. 2018. Deep discrete supervised hashing. IEEE Transactions on Image Pro-

cessing 27 (2018), 5996–6009.

[17] Qing-Yuan Jiang and Wu-Jun Li. 2017. Deep cross-modal hashing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 3270–3278.

[18] Qing-Yuan Jiang and Wu-Jun Li. 2018. Asymmetric deep supervised hashing. In Proceedings of the AAAI Conference

on Artificial Intelligence. 3342–3349.

[19] Qing-Yuan Jiang and Wu-Jun Li. 2019. Discrete latent factor model for cross-modal hashing. IEEE Transactions on

Image Processing 28, 7 (2019), 3490–3501.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

Deep Uncoupled Discrete Hashing via Similarity Matrix Decomposition 22:21

[20] S. Jin, H. Yao, X. Sun, S. Zhou, L. Zhang, and X. Hua. 2020. Deep saliency hashing for fine-grained retrieval. IEEE

Transactions on Image Processing 29 (2020), 5336–5351.

[21] Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua Zhou. 2016. Column sampling based discrete supervised hashing. In

Proceedings of the AAAI Conference on Artificial Intelligence. 1230–1236.

[22] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning Multiple Layers of Features from Tiny Images. Technical Report.

[23] Chuanxiang Li, Ting-Kun Yan, Xin Luo, Liqiang Nie, and Xin-Shun Xu. 2019. Supervised robust discrete multimodal

hashing for cross-media retrieval. IEEE Transactions on Multimedia 21 (2019), 2863–2877.

[24] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. 2017. Deep supervised discrete hashing. In Proceedings of the Conference

and Workshop on Neural Information Processing Systems. 2482–2491.

[25] Shuyan Li, Zhixiang Chen, Jiwen Lu, Xiu Li, and Jie Zhou. 2019. Neighborhood preserving hashing for scalable video

retrieval. In Proceedings of the IEEE International Conference on Computer Vision. 8212–8221.

[26] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2016. Feature learning based deep supervised hashing with pairwise

labels. In Proceedings of the International Joint Conference on Artificial Intelligence. 1711–1717.

[27] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton Van den Hengel, and David Suter. 2014. Fast supervised hashing

with decision trees for high-dimensional data. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition. 1963–1970.

[28] Kevin Lin, Jiwen Lu, Chu Song Chen, and Jie Zhou. 2016. Learning compact binary descriptors with unsupervised

deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1183–1192.

[29] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence

Zitnick. 2014. Microsoft Coco: Common objects in context. In European Conference on Computer Vision. Springer, 740–

755.

[30] Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. 2016. Deep supervised hashing for fast image retrieval.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2064–2072.

[31] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Supervised hashing with kernels. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2074–2081.

[32] Xin Luo, Peng Fei Zhang, Zi Huang, Liqiang Nie, and Xin Shun Xu. 2019. Discrete hashing with multiple supervision.

IEEE Transactions on Image Processing 28 (2019), 2962–2975.

[33] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. 2011. Reading digits in natural

images with unsupervised feature learning. In Proceedings of the Conference and Workshop on Neural Information

Processing Systems.

[34] Xiushan Nie, Weizhen Jing, Chaoran Cui, Jason Zhang, Lei Zhu, and Yilong Yin. 2019. Joint multi-view hashing for

large-scale near-duplicate video retrieval. IEEE Transactions on Knowledge and Data Engineering 32 (2019), 1951–1965.

[35] Maxim Raginsky and Svetlana Lazebnik. 2009. Locality-sensitive binary codes from shift-invariant kernels. In Pro-

ceedings of the Conference and Workshop on Neural Information Processing Systems. 1509–1517.

[36] Fumin Shen, Xin Gao, Li Liu, Yang Yang, and Heng Tao Shen. 2017. Deep asymmetric pairwise hashing. In Proceedings

of the ACM International Conference on Multimedia. 1522–1530.

[37] Fumin Shen, Yadong Mu, Yang Yang, Wei Liu, Li Liu, Jingkuan Song, and Heng Tao Shen. 2017. Classification by

retrieval: Binarizing data and classifiers. In Proceedings of the International ACM SIGIR Conference on Research and

Development in Information Retrieval. 595–604.

[38] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised discrete hashing. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition. 37–45.

[39] Fumin Shen, Yan Xu, Li Liu, Yang Yang, Zi Huang, and Heng Tao Shen. 2018. Unsupervised deep hashing with

similarity-adaptive and discrete optimization. IEEE Transactions on Pattern Analysis and Machine Intelligence 40 (2018),

3034–3044.

[40] Jinhui Tang, Jie Lin, Zechao Li, and Jian Yang. 2018. Discriminative deep quantization hashing for face image retrieval.

IEEE Transactions on Neural Networks and Learning Systems 29 (2018), 6154–6162.

[41] Andrea Vedaldi and Karel Lenc. 2015. Matconvnet: Convolutional neural networks for Matlab. In Proceedings of the

ACM International Conference on Multimedia. 689–692.

[42] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen. 2018. A survey on learning to hash. IEEE

Transactions on Pattern Analysis and Machine Intelligence 40, 4 (2018), 769–790.

[43] Yair Weiss, Antonio Torralba, and Rob Fergus. 2009. Spectral hashing. In Proceedings of the Conference and Workshop

on Neural Information Processing Systems. 1753–1760.

[44] Dayan Wu, Qi Dai, Jing Liu, Bo Li, and Weiping Wang. 2019. Deep incremental hashing network for efficient image

retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 9069–9077.

[45] Lin Wu, Yang Wang, Zongyuan Ge, Qichang Hu, and Xue Li. 2018. Structured deep hashing with convolutional neural

networks for fast person re-identification. Computer Vision and Image Understanding 167 (2018), 63–73.

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

22:22 D. Wu et al.

[46] Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. 2014. Supervised hashing for image retrieval via

image representation learning. In Proceedings of the AAAI Conference on Artificial Intelligence. 2156–2162.

[47] De Xie, Cheng Deng, Chao Li, Xianglong Liu, and Dacheng Tao. 2020. Multi-task consistency-preserving adversarial

hashing for cross-modal retrieval. IEEE Transactions on Image Processing 29 (2020), 3626–3637.

[48] Xinyu Yan, Lijun Zhang, and Wu Jun Li. 2017. Semi-supervised deep hashing with a bipartite graph. In Proceedings of

the International Joint Conference on Artificial Intelligence.

[49] Erkun Yang, Cheng Deng, Tongliang Liu, Wei Liu, and Dacheng Tao. 2018. Semantic structure-based unsupervised

deep hashing. In Proceedings of the International Joint Conference on Artificial Intelligence. 1064–1070.

[50] Erkun Yang, Cheng Deng, Wei Liu, Xianglong Liu, Dacheng Tao, and Xinbo Gao. 2017. Pairwise relationship guided

deep hashing for cross-modal retrieval. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 31.

[51] Erkun Yang, Tongliang Liu, Cheng Deng, Wei Liu, and Dacheng Tao. 2019. DistillHash: Unsupervised deep hashing

by distilling data pairs. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2946–2955.

[52] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis E. H. Tay, Zequn Jie, Wei Liu, and Jiashi Feng. 2020. Central similarity

quantization for efficient image and video retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition. 3083–3092.

[53] Haofeng Zhang, Li Liu, Yang Long, and Ling Shao. 2018. Unsupervised deep hashing with pseudo labels for scalable

image retrieval. IEEE Transactions on Image Processing 27 (2018), 1626–1638.

[54] Jian Zhang and Yuxin Peng. 2019. Multi-pathway generative adversarial hashing for unsupervised cross-modal re-

trieval. IEEE Transactions on Multimedia 22 (2019), 174–187.

[55] Jian Zhang and Yuxin Peng. 2019. SSDH: Semi-supervised deep hashing for large scale image retrieval. IEEE Transac-

tions on Circuits and Systems for Video Technology 29 (2019), 212–225.

[56] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. 2014. Supervised hashing with latent factor models. In Pro-

ceedings of the International ACM SIGIR Conference on Research and Development in Information Retrieval. 173–182.

[57] Ruimao Zhang, Liang Lin, Rui Zhang, Wangmeng Zuo, and Lei Zhang. 2015. Bit-scalable deep hashing with regularized

similarity learning for image retrieval and person re-identification. IEEE Transactions on Image Processing 24 (2015),

4766–4779.

[58] Fang Zhao, Yongzhen Huang, Liang Wang, and Tieniu Tan. 2015. Deep semantic ranking based hashing for multi-label

image retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 1556–1564.

[59] Xiang Zhou, Fumin Shen, Li Liu, Wei Liu, Liqiang Nie, Yang Yang, and Heng Tao Shen. 2020. Graph convolutional

network hashing. IEEE Transactions on Cybernetics 50 (2020), 1460–1472.

[60] Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. 2016. Deep hashing network for efficient similarity retrieval.

In Proceedings of the AAAI Conference on Artificial Intelligence. 2415–2421.

[61] Bohan Zhuang, Guosheng Lin, Chunhua Shen, and Ian Reid. 2016. Fast training of triplet-based deep binary embedding

networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 5955–5964.

Received 15 August 2021; revised 22 January 2022; accepted 2 March 2022

ACM Trans. Multimedia Comput. Commun. Appl., Vol. 19, No. 1, Article 22. Publication date: January 2023.

