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Abstract

Cross-modal correlation provides an inherent supervi-
sion for video unsupervised representation learning. Ex-
isting methods focus on distinguishing different video clips
by visual and audio representations. We human visual per-
ception could attend to regions where sounds are made,
and our auditory perception could also ground their fre-
quencies of sounding objects, which we call bidirectional
local correspondence. Such supervision is intuitive but
not well explored in the contrastive learning framework.
This paper introduces a pretext task, Cross-Modal Atten-
tion Consistency (CMAC), for exploring the bidirectional
local correspondence property. The CMAC approach aims
to align the regional attention generated purely from the vi-
sual signal with the target attention generated under the
guidance of acoustic signal, and do a similar alignment
for frequency grounding on the acoustic attention. Ac-
companied by a remoulded cross-modal contrastive loss
where we consider additional within-modal interactions,
the CMAC approach works effectively for enforcing the
bidirectional alignment. Extensive experiments on six
downstream benchmarks demonstrate that CMAC can im-
prove the state-of-the-art performance on both visual and
audio modalities.

1. Introduction

Unsupervised image representation learning [47, 37, 15,
19, 7] has attracted great attention recently, which attempts
to learn useful knowledge from massive unlabeled data and
transfer to various downstream tasks. Nevertheless, the ef-
forts in video counterpart are still inapparent, though the
multi-modal nature is particularly suitable for unsupervised
learning by providing intensive coherence and variation in-
formation. This paper focuses on the Video-Audio Un-
supervised Learning task [25, 30, 38, 25], which aims at

*Work was done during internship at Microsoft.
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exploring cross-modal clues to simultaneously learn visual
and audio representations from massive unlabeled videos.
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Figure 1. CMAC expects the visual encoder to focus on the regions
where sounds are made and the audio encoder to focus on sounds
from the interested objects.

A general technique [25, 30] in the literature is to lever-
age the intrinsic correspondence between visual frames and
audio waves by determining whether they are from the same
video instance. With recent advances of contrastive learning
[48, 19], these approaches make positive (negative) video-
audio pairs similar (dissimilar). Based on this paradigm,
AVTS [25] designs a harder synchronization supervision,
which defines positive visual-audio pairs only when they
are from the identical clip of a video. In addition to cross-
modal discrimination, AVID [30] considers within-modal
discrimination, which simultaneously explores the relation-
ship between visual-audio, visual-visual, and audio-audio
pairs. Recently, GDT [38] develops a unified visual-audio
contrastive framework by exploring more comprehensive
data augmentations and modality relationship.

Despite the impressive performance of the above meth-
ods, their pretext supervisions only consider the instance
level relationship between global modality representations,
e.g. the aggregated spatio-temporal features and audio spec-
trogram features [1, 38]. This inevitably discards fine-
grained local clues, i.e. the relation between each spatio-
temporal region and foreground sound frequency. In the
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human sensory system, our visual perception is sensitive to
the spatial regions where sounds are made, and vice versa
our auditory perception is sensitive to the sound frequencies
belonging to foreground objects. This phenomenon, called
bidirectional local correspondence, is natural and intuitive
to associate spatio-temporal visual clues with acoustic fre-
quencies. Some early works [2, 35, 34] study the global
alignment between modalities for representation learning,
while ignoring such local relation. One recent exploration
[23] considers it in image feature learning via co-clustering.
However, their method has not been validated in the chal-
lenging large-scale video unsupervised learning task.

In this paper, we propose a novel pretext task, namely
Cross-Modal Attention Consistency (CMAC), for exploring
the bidirectional local correspondence property between vi-
sual and acoustic signals. The core insight is to make the
visual encoder attend to regions where sounds are made
and the audio encoder attend to sound frequencies from
interested objects, as shown in Fig. 1. To achieve the
goal, CMAC proposes to align the regional attention gen-
erated purely from the visual signal with the target atten-
tion generated under the guidance of acoustic signal, and do
a similar alignment for frequency grounding on the acous-
tic attention. Compared with traditional cross-modal con-
trastive manner [1, 38], CMAC provides a novel mechanism
that considers bidirectional local correspondence between
spatio-temporal visual clues and audio-spectrogram signals
via attention consistency.

Specifically, to produce the target cross-modal attention
without human annotations, we devise a pyramid attention
mechanism. CMAC first dynamically learns a set of adap-
tive filters (kernels) in each modality. To generate target
attention for one modality (e.g. visual), the learned filters
from the other modality (i.e. audio-induced) are utilized to
perform filtering on its representations (i.e. visual). The pre-
dicted audio-guided visual attention map thus indicates the
spatio-temporal regions that are most related to audio sig-
nals, and vice versa for the visual-guided audio attention
map. With the learned cross-modal attention maps as super-
vision, CMAC then preserves the attention consistency be-
tween them and the single-modality induced attention maps.

The proposed attention consistency works effectively in
accompany with a remoulded contrastive loss, where ad-
ditional within-modal information is considered. Different
from AVID [30], we only involve within-modal negative
samples from previous batch data, thereby without extra
memory cost for resampling within-modal positive samples
for the current batch. This simple yet effective modification
successfully boosts the performance. Experiments on var-
ious downstream tasks including action recognition, video
retrieval, and audio classification show that CMAC can im-
prove the state-of-the-art results.

The contributions of this paper are three-fold: (1) We

show that the bidirectional local correspondence is effec-
tive in cross-modal representation learning; (2) A novel
pretext task namely Cross-Modal Attention Consistency
(CMAC) is introduced for unsupervised learning; (3) New
state-of-the-art results are achieved by CMAC on various
downstream benchmarks.

2. Related Works
Unsupervised representation learning targets at learning

good data representations in an unsupervised manner.
Unsupervised learning from images. Due to unavailable
human annotation, existing methods focus on designing
pretext tasks [10, 47, 37, 15] to learn good data represen-
tations. For example, a seminal work [11] augments each
image into several transformations and regards each image
as an exemplar, thus a traditional classification task can be
defined as recognizing image transformations into their ex-
emplar category. Besides, CFN [32] designs a jigsaw puzzle
task by predicting orders of different patches from the same
image, and RotNet [15] predicts the rotation angles of an
image. These proxy tasks aim to understand some low-level
image concepts, such as rotation invariance and spatial re-
lationship among image patches. Recently, contrastive loss
[17, 48, 33, 22, 52, 21, 6, 16] has attracted great attention,
which makes different transformations from the same image
attract and those from different images repel. Compared to
fixed prototypes in exemplar methods, the contrastive loss
can vary on-the-fly training. Two representative methods
are MoCo [19] and SimCLR [7]. MoCo designs a dynamic
dictionary with a moving-averaged encoder to store a large-
scale and consistent instance representation set, and Sim-
CLR explores the importance of projection head and com-
prehensive data augmentations in unsupervised learning.
Cross-modal unsupervised learning. Compared to im-
ages, videos are more commonly seen and contain a rich
variety of modalities, e.g. visual, audio, and speech sig-
nals. The correlation between different modalities is a nat-
ural supervision that has attracted increasing interest [9].
Some works [45, 29, 27, 31] leverage the speech as a
weak supervision, and other works explore the audio self-
supervision to boost visual localization [42], audio-visual
source separation [18, 12, 13, 41], and representation learn-
ing [2, 34, 40, 3]. In this work, we focus on visual-audio
unsupervised learning, which aims at jointly learning visual
and audio representations in an unsupervised manner. A
general paradigm is to detect whether the visual and au-
dio signals are from the same video, which is commonly
solved via cross-modal contrastive learning [25, 30, 38, 49].
AVTS [25] further employs the temporal synchronization
by defining positive visual-audio pairs only when they are
temporally synchronized, constraining the representations
to understand the temporal content. In addition to the cross-
modal learning, AVID [30] introduces the within-modal
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Figure 2. Overview of CMAC. We aim to align regional attention generated purely from the visual signal with target attention generated
under the guidance of audio signal, and do the similar alignment for the audio counterpart. CMAC first produces filters for both modalities,
and then generates cross-modal guided attention by searching the most matched patterns in one modality in terms of filters from the other
modality. The guided attention is used to supervise the single-modal attention via attention consistency Lac. A remoulded contrastive loss
Lcl is leveraged to bridge the semantic gap between filters of two modalities by considering additional within-modal negative samples.

information via extra visual-visual and audio-audio con-
trastive learning, but it requires doubling the memory cost
for both within- and cross-modal positive pairs. GDT [38]
explores more comprehensive data augmentations and data
pair constructions. Different from cross-modal contrastive
learning, XDC [1] leverages unsupervised clustering in one
modality to supervise representations of the other modal-
ity. AVSlowFast [49] proposes a visual-audio encode ar-
chitecture that contains slow and fast visual pathways to
explore knowledge at different temporal scales. Though
above methods achieve promising results, they only con-
sider cross-modal instance discrimination by distinguishing
different clips, while ignoring the local correspondence be-
tween spatio-temporal regions and acoustic frequencies.

Notably, the visual-audio local correspondence has been
partially studied in visual-audio localization [51, 41] and
representation learning [23] methods. For example, DMC
[23] treats the local features in image feature maps as a
set of distinct components, and learns the visual and audi-
tory subnets by co-clustering them. Though the learned vi-
sual features perform well in image classification on small
datasets, however, this method has not been validated in the
challenging unsupervised video pretraining task. In contrast
to the clustering-based learning in DMC, in this paper we
propose a novel attention-based method to explore the ef-
fectiveness of local correspondence in this challenging task,
rather than learning exact localization between modalities.

3. Method
3.1. Preliminaries

Suppose we have a set of videos {x} consisting of a vi-
sual track (RGB frames) and an audio track (sound), the
target of visual-audio unsupervised learning is to learn fea-
ture encodings fv(·) and fa(·) for both modalities that can
well transfer to various downstream visual or audio tasks.

Formally, we define (vn,an) as the encoded visual and
audio representations of the n-th video, i.e. vn = fv(xn),
an = fa(xn). A general paradigm is to detect synchro-
nized pair of (v, a) in a contrastive manner. When v and a
are from the same location of one video, they are synchro-
nized and identified as positive sample pair. When they are
from different videos, they form a negative pair. By sam-
pling massive positive and negative visual-audio pairs, the
noise-contrastive loss [7, 48] can be formulated as:

Lnce(v,a) = −
1

N

N∑
n=1

log
sim(vn,an)∑
m sim(vn,am)

, (1)

where sim(x, y) = e<x,y>τ , and < ·, · >τ is the cosine
similarity divided by a temperature parameter τ . N is the
size of batch. When m 6= n, am is a negative sample. For
simplicity, we omitted the visual and audio augmentations
here. The final cross-modal contrastive loss becomes:

Lnce(v,a) + Lnce(a,v). (2)



Eq. (2) indeed leverages the intrinsic synchronization be-
tween visual and audio signals as supervision, i.e., detect-
ing whether the input visual and audio representations are
synchronized. However, in human perception mechanism,
a more intuitive supervision is that our visual system usually
focuses on the regions where sounds are made, and our au-
ditory system focuses on the frequencies that belong to in-
terested objects, called bidirectional local correspondence.
To introduce such an important pretext supervision, we pro-
pose a novel Cross-Modal Attention Consistency frame-
work, of which the illustration is shown in Fig. 2.

3.2. Cross-Modal Attention Consistency

The proposed Cross-Modal Attention Consistency
(CMAC) aims to explore the bidirectional local correspon-
dences between v and a to supervise the visual encoder
fv(·) and audio encoder fa(·). To achieve the goal, CMAC
tackles two challenges: a) how to localize the crucial spatio-
temporal regions and acoustic frequencies as supervisions,
and b) how to constrain fv(·) and fa(·) to concentrate on
the localized regions and frequencies.

Given a synchronized pair1 vn ∈ RC×T×H×W and
an ∈ RC×T̃×F , CMAC first estimates a set of adaptive
filters (kernels) on visual and audio representations by

κvn = pool(gv(vn)), κan = pool(ga(an)), (3)

where gv(·) and ga(·) are two transformation functions im-
plemented by conv. + bn operations. κvn and κan are the
produced filters for visual and audio modalities, respec-
tively. pool(·) is the pooling function that controls the ker-
nel size of κvn and κan. Here, we adopt the global average
pooling for simplicity, which means κvn ∈ RC×1×1×1 and
κan ∈ RC×1×1. These filters provide the modality-specific
essentials for capturing related contents in the other modal-
ity. With κvn and κan, we leverage the attention mechanism
to highlight the corresponding contents by devising a pyra-
mid correlation filtering module for each modality.
Pyramid Correlation Filtering. To generate the target at-
tention map for one modality, e.g. visual, we utilize the
learned filters from the other modality, i.e. audio, to perform
Pyramid Correlation Filtering (PCF) on its representations
(i.e. visual). The core insight is to search the most matched
patterns in one modality in terms of filters from the other
modality. Consequently, the attention map svn (san) is cal-
culated by convolving the filter κan (κvn) over the modality
representation vn (an), which can be formulated as

svn = norm(κan ∗ gv(vn)), san = norm(κvn ∗ ga(an)), (4)

where svn ∈ RT×H×W is the audio-guided visual attention
for vn, and san ∈ RT̃×F is the visual-guided audio attention

1{C, T,H,W} denote channel, frame, height, and width respectively.
{T̃ , F} indicate the time and frequency. T̃ is determined by window width
of FFT and is generally different from T .

for an. Here gv(·) and ga(·) are shared with that in Eq.
(3). (∗) denotes the convolution operation. For instance, svn
measures the similarity response between κan and each local
feature in vn. norm(·) maps the response map into [0, 1],
where the cosine-based normaliztion is used in this paper.
The predicted audio-guided visual attention svn indicates the
spatio-temporal regions that are most related to the audio
signals, i.e. regions where the sounds are made. Similarly,
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Figure 3. Pyramid Correlation Filtering (PCF). The inputs of PCF
contain a representation and corresponding filters. PCF convolves
filters over the representations at each position and obtains a re-
sponse map. Notably, a pyramid scaling strategy is used to fuse
the multi-scale responses.

the visual-guided audio attention san indicates the acoustic
frequencies from the interested objects.

It is worth noting that we adopt a pyramid scaling strat-
egy to obtain better attention clues. Since both svn and san
preserve the original scales of representations, we further
downsample vn and an to the half resolution and calculate
the filter response again, as shown in Fig. 3. As a result, we
fuse the response maps at different scales to generate the
final attention map.
Attention Consistency. For exploring local corresponding
patterns between vn and an, the learned svn and san can be
regarded as pseudo labels that fv(·) and fa(·) should fo-
cus on. As illustrated in Fig. 2, CMAC first exploits two
saliency detection heads to directly infer the within-modal
attention maps ŝvn, ŝan purely from vn, an by:

ŝvn = σ(hv(vn)), ŝan = σ(ha(an)), (5)

where hv(·) and ha(·) are two convolution blocks for pre-
dicting the attention maps, and σ(·) is the sigmoid func-
tion. The learned single-modality induced maps ŝvn, ŝan im-
ply the concentrations of the modality encoders fv(·), fa(·).
Accordingly, the attention consistency can be preserved by
aligning them with the previous cross-modal attention maps
svn, san as follows:

Lac(s
v
n, ŝ

v
n) = ||svn − ŝvn||22, Lac(s

a
n, ŝ

a
n) = ||san − ŝan||22. (6)

Contrastive Learning. In the above Pyramid Correlation
Filtering, directly performing the cross-modal correlation



filtering would lead to degradation as the filter and repre-
sentation are from different modalities with a serious statis-
tical gap. To this end, we leverage the contrastive learn-
ing to bridge the modality gap between κan, κvn and vn,
an. Specifically, both κvn and κan are projected into joint
embedding space via FC projection heads. A cross-modal
contrastive loss Lcl is then leveraged to align them with the
instance discrimination supervision, so that they can learn
cross-modal knowledge:

Lcl(κ
v
n,κ

a
n) = −log

sim(κv
n,κ

a
n)∑

m sim(κv
n,κa

m) +
∑

m 6=n sim(κv
n,κv

m)
.

(7)
Here we omit the projection heads for simplicity. Lcl is a
variant of contrastive loss, where the main difference be-
tween Lcl and Lnce is that we include within-modal neg-
ative pairs (κvn,κ

v
m) in Eq. (7) to introduce within-modal

discrimination knowledge, which is ignored by most of
the existing methods [25, 49, 38] as in Eq. (1). AVID
[30] also considers the within-modal knowledge by adding
Lnce(vn1,vn2) andLnce(an1,an2) to Eq. (1), which, how-
ever, requires saving two clips for n-th video in a mini-batch
as positive pairs. In contrast, our simple yet effective modi-
fication requires no extra positive samples and no additional
memory overhead.

Notably, the contrastive learning of Lcl has two main
effects on CMAC: a) introducing within- and cross-modal
instance discrimination knowledge which has been proved
crucial and fundamental for fv(·) and fa(·) [25, 38]; and b)
bridging the modality gap between κan, κvn and vn, an.
Optimization. Finally, the overall objective function of
CMAC becomes:

Lall =Lcl(κvn,κan) + Lcl(κan,κvn)
+ λ[Lac(svn, ŝ

v
n) + Lac(san, ŝ

a
n)],

(8)

where λ is a hyper-parameter to balance contrastive loss and
attention consistency loss.

4. Experiments

The experiments are conducted by transferring pre-
trained representations of Cross-Modal Attention Consis-
tency (CMAC) to various downstream tasks, as well as sev-
eral ablation studies. For additional experimental results,
please refer to the supplementary material.

4.1. Pretraining Setting

For pretraining, the standard visual-audio dataset of
Kinetics-400 [24] is used, which contains 240K videos of
about 10 seconds. After filtering out bad instances, e.g. no
audio signals, about 220K videos are used for pretraining.
The results on the large-scale AudioSet [14] are provided in
supplementary material.

CMAC aims to learn a visual encoder fv(·) and an audio
encoder fa(·) in unsupervised manner. R(2+1)D-18 [46] is
used as fv(·), and ResNet-9 [20] is used as fa(·). For each
video instance in a batch, we randomly sample 1-second
clip and produce visual modality data and audio modality
data. This makes our positive visual-audio pairs always
synchronous from the same video and negative visual-audio
pairs from different videos, which is different from [25, 38].
The augmentation for the visual modality contains random
cropping 128 × 128 and random horizontal flipping. The
augmentation for audio modality employs log mel filter-
ing with 257 bank filters, time warping, random frequency
masking, and random time masking in SpecAugment [36].
The contrastive learning in CMAC adopts MoCo [19] with
default settings, e.g., τ = 0.07, memory bank size as 15000,
and momentum update parameter as 0.999. The channels
of cross-modal filters and contrastive head are 512 and 256,
respectively. For optimization, we use SGD optimizer with
lr = 0.01, weight decay 1e− 5, momentum 0.9, and mini-
batch size 128 on 8 V100 GPUs. A gradual warp-up sched-
ule is utilized for the first 10 epochs.

4.2. Downstream Setting

Video Action Recognition. We evaluate the visual rep-
resentations from fv(·) on two widely-used benchmarks,
UCF101 [43] and HMDB51 [26]. UCF101 contains ˜13K
videos of 101 action classes, and HMDB51 contains ˜7K
videos of 51 activity classes. During training, we randomly
sample 10 clips of 32 frames for each video. For visual aug-
mentation, we follow [38] and use random cropping, color
jitter, and random horizontal flipping. For optimization, we
use SGD with lr = 0.005, weight decay as 5e − 3, and
momentum as 0.9. We use a mini-batch of 16 and train for
12 epochs. During testing, we uniformly sample 10 clips
for each video, average their softmax scores, and report the
class with the highest score. The averaged top-1 accuracies
across three split folds are reported for both UCF101 and
HMDB51.
Video Action Retrieval. For the video retrieval task, we
report the recall metric of 1, 5, 10 samples for split-1 of
UCF101 and HMDB51 datasets, following the protocol in
[50]. The features are directly extracted from the pretrained
models without finetuning. For each video, we uniformly
sample 10 clips and average their pooled features after the
last residual block. We use samples from the validation set
to query samples in the training set according to K-NN strat-
egy and cosine distance.
Audio Classification. We evaluate the audio represen-
tation from fa(·) on ESC50 [39], DCASE2013 [44] and
DCASE2014 [44] benchmarks by quickly training a lin-
ear classifier. ESC50 contains 2K audio clips from 50 dif-
ferent classes. DCASE2013 and DCASE2014 contain 100
training clips from 10 different classes. For each audio in



Table 1. Evaluation of Attention Consistency (Att. Cons.) and
Contrastive Loss (Contr. Loss) in CMAC.

Method Att. Cons. Contr. Loss UCF101 HMDB51
Scratch 7 7 73.2 23.7
Single Modality 7 3 82.5 47.3

CMAC w/o Lcl 3 7 76.4 25.1
CMAC w/o Lac 7 3 85.5 56.4
CMAC 3 3 87.2 57.8

ESC50, we sample 10 clips of 2-second length for training,
and average the predicted scores of sampled 10 clips for
testing. For DCASE2013 and DCASE2014, we extract 60
clips of 1-second length for training and testing.

4.3. Understanding Cross-Modal Attention Consis-
tency

We present four ablation studies to evaluate each compo-
nent of CMAC. For efficient validation, these experiments
are conducted by pretraining on Kinetics with 50 epochs,
batch size of 64, and finetuning on split-1 of UCF101 and
HMDB51 without color jitter augmentation.

4.3.1 Effect of each Component in CMAC

CMAC essentially learns two kinds of knowledge, i.e.,
cross-modal attention consistency and instance discrimina-
tion, with Lac and Lcl, respectively. Here, we evaluate their
effects in Table 1. We begin with the baseline of CMAC
w/o Lcl, since Lcl is also crucial to the attention consis-
tency knowledge by bridging the modality gap between fil-
ters. Note that removing both Lcl and Lac will invalidate
the pretraining (i.e. from Scratch). The results show that,
without bridging the modality gap between filters, CMAC
can hardly produce reasonable guided attentions for consis-
tency preserving, thus leading to similar results to training
from scratch. Then, we add Lcl but remove Lac, which
indicates that only instance discrimination knowledge is in-
troduced. This improves the performance from 76.4% to
85.5% on UCF101, demonstrating the great importance of
cross-modal contrastive learning. We also list the inferior
results of single modality contrastive learning for compari-
son. Finally, with both Lcl and Lac, the result is further in-
creased from 85.5% to 87.2%, which proves the effective-
ness and complementarity of attention consistency knowl-
edge. In summary, the bidirectional local correspondence
between visual and audio signals can obviously benefit the
fine-grained video content understanding.

4.3.2 Analysis of λ

We evaluate the effects of cross-modal attention consistency
Lac by varying λ in Eq. (8). From Fig. 4, it can be ob-
served that, when λ increases from 0 to 1.5, the perfor-
mance of CMAC is stably improved from 85.5% to 87.2%
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Figure 4. Evaluation for different λ on UCF-101 and HMDB-51.

Table 2. Evaluation of choices in the pyramid correlation filtering.

norm. Scale UCF101 HMDB51

PC
F

None 1 85.8 57.0
softmax 1 86.6 57.4

cosine
1 87.0 57.6
2 87.2 57.9
3 86.9 57.8

on UCF101. This proves that adding attention consistency
for both visual and audio modalities can boost the encoders
to understand visual content, thereby obtaining better down-
stream evaluation. When λ is larger than 1.5, the per-
formance drops. The reason may be that the localized
spatio-temporal regions from audio kernels are not accurate
enough. Thus imposing strong cross-modal attention con-
sistency may suffer from noisy attention maps. Finally, we
set λ = 1.5 in the following experiments.

4.3.3 Analysis of Pyramid Correlation Filtering

In terms of pyramid correlation filtering (PCF), we conduct
several experiments to search for a suitable architecture for
generating the guided attention maps, as demonstrated in
Table 2. The baseline is that PCF uses no normalization
for convolution operation (∗) in Eq. (4) and no multi-scale
fusion. Thus, the guided attention maps produced by fil-
ters and representations may be out of range [0, 1], which
makes the attention gradient unstable. Then, we add Soft-
max operation to normalize the response map, which brings
gains on both datasets, e.g. 0.8% improvement on UCF101.
However, the Softmax operation tends to suppress most of
the regions, which slows the training at the beginning stage.
To this end, we further replace the Softmax with a cosine
normalization for ∗, which brings obvious improvements.
Next, with the cosine normalization, we evaluate the effects
of fusing multi-scale attention maps. We observe that fusing
two-scale attention maps obtains the best attention guidance
for both datasets. The reason may be that, due to limited
memory resources, the spatial resolution of the final visual
representation of fv(·) has been reduced from 128× 128 to
8× 8, indicating that a two-scale fusion is enough.
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Figure 5. Visualization of attention maps generated from cross-modal filters (Guidance) and encoders (Prediction) for both visual and audio
modalities. The last column is a bad case with messy background and interlaced objects, where the localized regions are not precise.

4.3.4 Analysis of Within-modal Information in Con-
trastive Loss

Here we explore which kind of within-modal information
really works in cross-modal contrastive learning. Two types
of sampling policies are considered: a) Within-modal neg-
ative sampling that takes two samples (with same modal-
ity) from different videos to form a negative pair and distin-
guishes them as in Eq. (7); b) Within-modal positive sam-
pling that takes two samples (with same modality) from the
same video to form a positive pair and aligns them. Note
that using both policies actually forms the strategy in AVID
[30]. The results are shown in Table 3. We observe that
the negative sampling could benefit CMAC a lot on both
datasets without extra memory expense, since we can sim-
ply utilize the samples from previous batch (stored in mem-
ory bank) to form negative pairs. In contrast, the positive
sampling harms the performance and even costs twice as
much memory as negative sampling, due to that it requires
saving two clips for each video. The possible reason for
the performance drop is that aligning within-modal positive
pairs would discard the intrinsic temporal synchronization
in each video.

Both the within-modal information in contrastive loss
and the proposed attention consistency mechanism make up
the impressive results of CMAC. According to our observa-

Table 3. Effects of within-modal negative samples (w/i Neg) and
within-modal positive samples (w/i Pos) in the contrastive loss of
CMAC. Iter. indicates the iteration number required for an epoch.

w/i Neg w/i Pos Iter. UCF101 HMDB51

CMAC

7 7 3, 509 86.5 57.0
3 7 3, 509 87.2 57.8
7 3 7, 018 86.2 56.4
3 3 7, 018 86.7 57.5

tion, both of them can bring considerable improvements,
indicating that they are complementary.

4.4. Visualization for Cross-modal Attention

The key insight of CMAC is that forcing the visual en-
coder fv(·) to attend to regions where sounds are made, and
the audio encoder fa(·) to ground the frequencies belong-
ing to the interested objects. Thus, we first visualize the
attention maps generated from cross-modal filters in Fig. 5
(Guidance row). It can be observed that, taking the car im-
age as an example, our audio-guided attention can success-
fully localize the car wheel regions where the wheel noises
are made in the visual frames. As a contrast, the attended re-
gions from fv(·) itself (Prediction row) focus on the whole
car body, because fv(·) is more interested in global informa-
tion without cross-modal local correspondence. It reveals
that the visual guidance from audio signals could be an ef-



Table 4. Comparison of video action recognition on UCF-101 and HMDB-51, which are pretrained on Kinetics-400. Averaged top-1
accuracy across official splits is reported. Method with * indicates that additional video texts (e.g. title) are used as supervision.

Methods Backbone Pretrained Dataset Input Size Batch Size Epoch UCF101 HMDB51
Multisensory[34] 3D-ResNet18 Kinetics-400 64× 2242 64 400 82.1 -
CPD*[27] 3D-ResNet50 Kinetics-400 8× 2242 128 110 88.7 57.7
AVTS[25] MC3-18 Kinetics-400 25× 2242 64 90 85.5 56.9
AV Sync+RotNet[49] AVSlowFast Kinetics-400 64× 2242 1024 120 87.0 54.6
SpeedNet[5] S3D Kinetics-400 16× 2242 - 81.1 48.8
XDC[1] R(2+1)D-18 Kinetics-400 32× 2242 32 120 86.8 52.6
AVID[30] R(2+1)D-18 Kinetics-400 32× 2242 256 400 87.5 60.8
GDT[38] R(2+1)D-18 Kinetics-400 32× 1282 768 200 89.3 60.0
CMAC R(2+1)D-18 Kinetics-400 32× 1282 128 200 90.3 61.1

Table 5. Compasrison of full retrieval on UCF101 and HMDB51
datasets, which are pretrained on Kinetics-400.

UCF101 HMDB51
Recall @ 1 5 10 1 5 10
ClipOrder[50] 14.1 30.3 40.4 7.6 22.9 34.4
SpeedNet[5] 13.0 28.1 37.5 - - -
VCP[28] 18.6 33.6 42.5 7.6 24.4 36.3
VSP[8] 24.6 41.9 51.3 10.3 26.6 38.8
GDT[38] 57.4 73.4 80.8 25.4 51.4 63.9
CMAC 58.4 74.2 81.3 26.0 52.2 64.2

fective supervision to constrain fv(·) to focus on local re-
gions with sounds, which brings significant improvements
as shown in Table 1. In terms of audio encoder fa(·), the
localized frequencies with guidance from visual signals are
more sparse than the focused frequencies from fa(·) itself.

However, CMAC is not always effective in localizing
correct visual and audio local regions, as shown in the last
column of Fig. 5. When the video has the messy back-
ground and interlaced objects, it is hard to precisely match
the corresponding local patterns without human annota-
tions. Nevertheless, these observations prove that the cross-
modal attention consistency is intuitive and reasonable in
visual-audio unsupervised representation learning.

4.5. Comparison with State-of-the-arts

Given our best setting, we train CMAC with longer
epochs of 200 and strong color jitter augmentation in [38],
and transfer the pretrained representations to various down-
stream tasks.
Video Recognition. We evaluate CMAC on two video
action recognition benchmarks of UCF101 and HMDB51.
The results are reported in Table 4, which shows that CMAC
obtains impressive results on both UCF101 and HMDB51.
It should be noted that CMAC is a computation-friendly
method. Particularly, GDT [38] utilizes 6 times of GPU cost
and batch size than CMAC, while CMAC surpasses GDT
about 1.0% on UCF101 and 1.1% on HMDB51. Compared
to AVID [30], CMAC also adopts much smaller batch size
and fewer epochs to obtain 2.8% improvement on UCF101
and 0.3% on HMDB51. The results reveal that the bidi-
rectional local correspondence is effective in boosting the
visual representation learning. After teaching the visual en-

Table 6. Comparison of audio classification by quickly training a
linear classifier. The pretrained dataset is Kinetics-400.

Methods ESC50
SoundNet[4] 74.2
AVTS[25] 76.7
AVID[30] 79.1
XDC*[1] 78.0
GDT[38] 78.6
CMAC 81.4

(a) ∗ indicates that the backbone
encoder fa(·) is also finetuned on
ESC50.

Methods D2013 D2014
Scratch 48 -
Single-Modal 61 -
Baseline 68 89
AVTS[30] - 91
GDT[38] 73 94
CMAC 76 96

(b) The baseline is a general
cross-modal contrastive loss as
defined in Eq. (2).

coder where to focus on, it becomes easier to understand
the visual content and distinguish different video instances.
Thus, CMAC requires fewer batch size and epoch to surpass
most of the existing methods.

Video Retrieval. For video retrieval, we evaluate the
pretrained representations from CMAC on UCF101 and
HMDB51 without finetuning the backbone. The results
are given in Table 5, from which we observe that CMAC
achieves new state-of-the-art performance in all settings.
This shows that video representations of similar object con-
tent from CMAC become closer than those from previous
methods, because the attention consistency makes the vi-
sual encoder focus on the correct object regions.

Audio Classification. For the audio classification task,
we evaluate the pretriained model from CMAC on ESC50,
DCASE2013, and DCASE2014 benchmarks. Notably, the
reported results of compared methods are pretrained on
Kinetic-400. Table 6 demonstrates that the pretrained model
from CMAC outperforms existing methods by a large mar-
gin, e.g. 2.8% improvement on ESC50. Note that XDC fur-
ther finetunes the backbone fa(·) on the downstream task,
while CMAC only learns the classifier and obtains better
performance. For DCASE2013 and DCASE2014, the re-
sult of GDT is obtained by using their official model pre-
trained on Kinetics-400. The superiority attributes to the lo-
calized voice frequencies according to target objects, which
also proves the effectiveness of the proposed CMAC.



5. Conclusion
In this paper, we propose a novel pretext task for visual-

audio unsupervised representation learning, namely Cross-
Modal Attention Consistency (CMAC). The core insight of
CMAC is that the visual perception encoder should atten-
tion to regions where sounds are made, and the auditory
perception should ground acoustic-frequencies of sounding
objects, which we call bidirectional local correspondence.
To model such a bidirectional local correspondence super-
vision, CMAC aims to align the regional attention maps
purely from visual signals with the target attention guid-
ance from audio signals, and vice versa. Accompanied by
a remoulded cross-modal contrastive loss with additional
within-modal interactions, CMAC obtains impressive re-
sults on various downstream tasks.
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