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a b s t r a c t

With the rapid development in the computer vision community, many recent studies show that high-
dimensional feature representations can produce better accuracies in various image and video content
recognition tasks. However, it also brings high costs for both computation and storage. In this paper, we
introduce a novel method called Bayesian Hashing, which learns an optimal Hamming embedding to
encode high-dimensional features to binary bits, and discuss its application to the challenging problem of
face recognition. The learned hashing representation is modeled with a well-designed supervised
Bayesian learning framework, which consists of three ingredients. First, we elaborately model local bit
correlations using Naive Bayesian model (FERN), and boost FERNs to obtain a classifier for the hashing bit
stream. Second, without incurring additional storage cost, we impose hashing bit-stream permutations
to obtain a series of classifiers, which could achieve better performance. Third, we introduce the se-
quential forward floating search (SFFS) algorithm to perform model selection on multiple-permutation
models, gaining further performance improvement. We carry out extensive evaluations and comparative
studies, which demonstrate that the proposed approach gives superior performance on both accuracy
and speed. State-of-the-art results are achieved on several well-known face recognition benchmarks.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Recently many researchers have demonstrated that, compared
to low-dimensional features, high-dimensional feature re-
presentations often perform better, especially in the area of image
and video content analysis. The challenging face recognition serves
as one of the typical tasks with this phenomenon [1,2]. Many ef-
forts are done to reduce the costs on both storage and computa-
tion, with the developments of different feature compression
(selection, filtering, and projection) techniques. In this paper, we
take face recognition as an example to study the feature com-
pression and associated classification problem.

Face recognition is a topic of active research in recent years,
mostly due to its wide applications [3,4]. In particular, researchers
have created several real-world benchmarks with challenging
uncontrolled face images recently, including Labeled Faces in the
Wild (LFW) and YouTube Faces (YTF), which have been popular in
this area.

Recent face recognition techniques could be roughly categor-
ized into two groups, i.e., low-level representation designs and
guo.li@intel.com (J. Li),
com (Y. Chen),
learning-based methods. In particular, the former methods aim at
designing robust hand-crafted feature representations. Hence,
various feature representation approaches are proposed, such as
Gabor [5,6], LBP [7], and HoG [8]. The latter methods utilize
modern machine learning techniques to provide better feature
representations or recognition strategies. For instance, with ma-
chine learning techniques, some methods could learn more dis-
criminative representations from the low-level features or raw
images, e.g. subspace based methods [9–12] and mid-level re-
presentation (a.k.a. attributes) learning [13,14]. Other methods try
to build advanced learning models with higher discriminative
power. The developed learning models can be distance metrics
[15–18], classifiers [19] and Boosting [20]. In addition, some recent
works rely on the popular deep learning techniques, which si-
multaneously perform feature learning and model training in an
end-to-end learning framework [21–24].

To achieve better recognition accuracies, many existing ap-
proaches tend to employ high-dimensional feature representa-
tions or over-complete feature sets [25,26,2,1]. However, with
such high-dimensional features, we need more storage space and
computational time, which make the practical application in-
feasible. To solve this problem, one of the recent works suggests to
learn low-rank representations from the high-dimensional fea-
tures [27]. Another solution is to generate good feature re-
presentations by using feature selection or sparse representation
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[28,29]. In this paper, different from performing the low-rank
matrix recovery or feature selection, we use hashing technology to
alleviate this issue. In particular, a novel Bayesian framework,
which encodes the high-dimensional face features into compact
binary codes, is proposed, yielding significantly reducing of com-
putation and storage costs. The learned hashing representation is
modeled with a well-designed supervised Bayesian learning fra-
mework, which consists of three steps. First, we elaborately model
local bit correlations using Naive Bayesian model (FERN), and
boost FERNs to obtain a classifier for the hashing bit streams.
Second, to further exploit bit-level relationships among different
binary codes, we impose hashing bit-stream permutations to ob-
tain a series of classifiers with different permutations for achieving
better discrimination power. Note this step does not incur addi-
tional storage cost. Third, we introduce the sequential forward
floating search (SFFS) algorithm to perform model selection on
multiple-permutation models, resulting in further performance
improvement. Unlike most existing face recognition methods that
use floating point feature representations, we use compact binary
codes extracted by the proposed Bayesian Hashing framework.
What is more, our method can still maintain state-of-the-art re-
cognition performance.

The main contribution of this work is the Bayesian optimal
Hamming embedding method, namely Bayesian Hashing, which
can efficiently encode floating point features into compact binary
codes. Also, after building the boosted FERNs classification models
on hashing bit-streams and exploiting bit-level relationships with
random permutation technique, we further show that perfor-
mance improvement could be obtained by sequential model se-
lection. Finally, extensive experiments are carried out on three
popular face benchmark datasets, i.e., the FRGC, the LFW and the
YTF. The results demonstrate that the proposed method produces
superior performance on both accuracy and speed. This paper
extends upon a recent conference version [30] with extended
discussions and new evaluations on a popular dataset and more
parameter settings.

In the following, we discuss related works in Section 2 and
introduce the proposed Bayesian Hashing in Section 3. In Section
4, we discuss experimental settings and results. Finally, Section 5
concludes this paper.
2. Related works

Related works are discussed in two groups: (1) feature pro-
jection and metric learning, and (2) supervised hashing.

2.1. Feature projection and metric learning

Numerous studies have focused on the high-dimensional feature
learning issue. Among these works, subspace methods are probably
the most common choices to reduce redundancy of high-dimen-
sional features. Suppose we are going to project a d-dimensional
raw feature into a p-dimensional discriminant subspace, with the
projection matrix to be of size d�p. Generally, the original feature
dimension d will be very high. For example, some traditional face
features such as Gabor feature [6,31] are with tens of thousands of
dimensions; in addition, the value of d could be more than several
hundreds of thousands in some over-complete feature learning al-
gorithms like [26,1,2]. It would be a huge cost to learn such a
projection matrix, which makes the practical application infeasible.
For example, Ref. [32] proposes a supervised regularization locality-
preserving projection approach based on a supervised graph and a
new regularization strategy, which is computationally expensive. In
order to solve the scalability problem, various techniques are
proposed, including the divide-and-conquer strategy [25], sparse
projection matrix learning with ℓ1 regularization [2], and low-rank
representations learning [27]. These techniques could reduce the
computation or storage cost to a certain degree.

Metric learning is also widely used in face recognition. It aims to
learn a distance metric which maximally separates different subject
classes. The most representative is the Mahalanobis distance metric,
which is defined in a quadric form ( ) = ( − ) ( − )d v v v v M v v,i j i j

T
i j ,

where vi and vj are features of two face images. The symmetric
positive definite matrix ∈ ×RM d d can be decomposed to A AT , where
A is a linear transformation matrix. The learned distance function

( )d v v,i j usually measure the actual distance in transformed space,
and can be incorporated into objectives like the logistic dis-
criminant function [15], and the Cosine function [17]. In [26], sparse
block diagonal constraints are imposed on the metric matrix M for
fast training. In [33], the authors proposed a binary representation
with metric learning to reduce the dimensionality of high-dimen-
sional Fisher vector (FV) features. In [34], the side information and
the inherent neighborhood structures among examples with a set of
similar pairwise constraints are utilized to learn a kernel coupled
distance metric. In addition, some other distance metrics are also
explored in recent works. Reference [35] uses Cayley–Klein distance
metric, which is defined in terms of logarithm and projective cross-
ratio function, as an alternative to the Mahalanobis metric. Re-
ference [36] utilizes projection metric to map data from the original
Grassmann manifold to another more discriminative one. Reference
[37] performs Log-Euclidean metric learning on symmetric positive
definite matrices manifold, and learns a tangent map to transform
the matrix logarithms to a new tangent space. Despite the good
results shown in these approaches, the time cost of metric learning
is very huge for high-dimensional data. We propose to encode the
high-dimensional features using a fast Bayesian Hashing method,
which significantly reduces the computation and storage costs.

2.2. Supervised hashing

By mapping raw features to compact binary codes (in Hamming
space) with the preservation of the similarity, hashing techniques
could significantly reduce the computation and storage costs.
Different from unsupervised hashing, which keeps the feature si-
milarity, supervised hashing aims to preserve semantic similarity.
More and more researchers have focused on this area. For ex-
ample, LDA-Hash [38] maximizes the difference between label-
same/label-different pairs in the linear discriminative projection
space. Supervised Hash with Kernels (KSH) [39] applies kerneli-
zation to formulate hash functions and minimizes the loss function
over hash codes. However, the kernel computation is very time
consuming in both training and testing. CNN Hash [40] learns the
hash functions in an end-to-end manner. Semantic correlation
maximization Hash (SCM) [41] handles large scale data by using
supervised multimodal hashing. FastHash [42] uses decision tree
based hash functions and GraphCut based binary code inference,
showing its applicability on large scale application. Supervised
discrete hashing [43] formulates the hash coding problem with
linear classifier training jointly, and decomposes the problem into
three sub-problems. Discrete cyclic coordinate descent algorithm
is proposed to solve the problem. Asymmetric inner product bin-
ary coding [44] learns two asymmetric coding functions such that
the inner products between original data pairs are approximated
by the produced codes. Dual complementary hashing [45] learns
multiple complementary hash tables, where all hash functions
inside each hash table are also complementary. Multi-component
hashing [46] tries to find latent components which imply the si-
milarity between different objects. Probabilistic attributed hashing
[47] integrates attributes with low-level features, by building
connections between them on latent binary codes. Different from
most of the existing supervised hashing techniques which attempt
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to preserve semantic similarity in the final Hamming space, our
Bayesian Hashing directly aims at minimizing the Bayes error of
the classification problem to generate compact hash codes.

Moreover, Ref. [48] proposes a method called BayesLSH. This
work has a similar name to our approach. However, it is funda-
mentally different from ours. It only uses the Bayes theorem to
estimate the similarity between two existing hash codes.
3. Bayesian hashing for face recognition

Since many practical face recognition systems use high-di-
mensional representations, they require significant computational
and storage overhead. Our objective is to learn a compact re-
presentation from the original features with negligible loss of re-
cognition performance. Being popular in large scale search and
retrieval applications, hashing based binary embedding, namely
Hamming embedding, has drawn intensive intentions in the past
decade. In this paper, we present a Bayesian Hashing method to
encode high-dimensional face features into compact and effective
binary codes. Briefly, we formulate our objective by minimizing
the Bayes error to obtain an optimal Hamming embedding. We
further utilize the boosted FERNs to perform the task of face re-
cognition with learned hash codes.

The proposed Bayesian hashing based face recognition system
consists of three key components. First, an optimal Hamming
embedding is obtained via minimizing the Bayes error and we
encode face patches into binary hash codes, as discussed in Section
3.2. Second, given learned Bayesian hash codes of face images, we
train boosted FERNs classifiers to performance recognition tasks.
Details are reported in Section 3.3. Finally, to employ the re-
lationships between different patches, a bit-stream permutation
technique is adopted to learn multiple random FERNs models.
Then the sequential forward floating search is applied to identify
good permutation models to produce final results, as discussed in
Section 3.4.

Below we first briefly introduce the notations, followed by the
details of each key component.
Fig. 1. An illustration of hash function h(x) in the 1-dimensional case. We solve the
problem by minimizing the Bayes error, where the sample x will be assigned to
class y¼�1 in this example.
3.1. Notations and settings

Note that we first transform the raw face images to Gradient
location-orientation histogram (GLOH), as suggested in [8]. In
particular, for each face image, n patches of different scales are
extracted around landmarks. Furthermore, we make a mirror of
each image, obtaining another n more patches. Therefore, we get a
total of =K n2 patches, each represented by 17 blocks, where
every block is with a 8 dimensional histogram-style feature. Fi-
nally, each patch is represented by a d0¼136 dimensional feature
vector.

In this paper, pair-wise (not limited to) representation for face
recognition is used as suggested in [49]. Given a pair of face images,
we obtain the corresponding feature vectors vi and ∈ vj

d (d¼Kn

d0). We define xij to be the pair representation which is element-
wise absolute-difference = (∥ − ∥ … ∥ − ∥ )x v v v v, ,ij i j

p
id jd

p
1 1 . Then,

xij is assigned with a label y¼1 if vi and vj are from the same
subject, and y¼�1 otherwise. The positive training set consists
of the same-subject pairs, and the negative training set consists
of the other pairs. Note that our method is not limited to univariate
(xij) form. We may easily extend our framework to bi-variables (pair
inputs) form ( )v v,i j , and obtain the discriminant function as in
[16] or [50]. Nevertheless, we are not going to discuss the bi-vari-
able case as it is beyond the scope of this work.
3.2. Bayesian hashing: formulation

We begin with the assumption that both and follow
normal distribution, i.e., μ Σ( | = ) = ( | )x xP y 1 ,p p and

μ Σ( | = − ) = ( | )x xP y 1 ,n n . Our goal is to predict the label y of the
given pair representation x. Thus the log-ratio discriminant func-
tion is:

μ μ

μ μ

Σ

Σ

( ) = ( = )
( = − )

= − ( − ) ( − )

+ ( − ) ( − ) + ⋅ ( )

−

−

x
x

x
x x

x x b

P y
P y

1

ln
, 1

, 1

, 1

p
T

p p

n
T

n n

1

1

where b is the bias parameter of the prior.
Similar to many hashing works, we need to seek a set of hash

functions ^ = ( )x by h ; . While in Bayesian Hashing, we aim to find
hash functions which minimize the following Bayes error on the
training set,

∫ ∫( ) = (^ ≠ | ) + (^ ≠ − | ) ( )∈ ∈
b x x x xP y d P y d1 1 . 2x x

Next we will first consider the simplest case with only 1-dimen-
sional feature. An extension on multi-dimensional setting will
then be discussed.

3.2.1. 1-dimensional case
The equations μ σ( | = ) = ( | )P x y x1 ,p p and μ σ( | = − ) = ( | )P x y x1 ,n n

hold in this case. Then we rewrite Eq. (1) to

μ σ μ σ( ) = − ( − ) + ( − ) + ( )x x x b/ / . 3p p n n
2 2 2 2

The hash function in this case could be obtained by assuming
σ σ σ= =p n a:

μ μ( ) = {( − ) − ( − ) + } ( )h x b x x b; sign 4p n
2 2

To solve b, a line search algorithm (such as golden section search)
is applied, with the target of minimizing the cost in Eq. (2). Fig. 1
illustrates how the hash function ( )h x b; works in the 1-dimen-
sional case.

3.2.2. d-dimensional case
Similar to many Hamming embedding algorithms [38], in d-

dimensional case ( > )d 1 , we adopt a standard two-stage
procedure.

First, a subspace projection is employed to decorrelate features.
To achieve this objective, many different well-known criteria could
be used, such as Bhattacharyya criterion [51]. Here we adopt the
Fisher criterion, which aims to maximize the separation between
and using the ratio of variances on and as



Fig. 2. Framework of the boosted FERNs classification model. Each column in-
dicates one bit-stream permutation, which represents one boosted FERNs classifier.
Each circle is one FERN group. In this example, each classifier has M groups of bits.

Table 1
The Boosted FERNs training algorithm using GentleBoost.

Input: Training set: {( )} =F y,i
k

i i
N

1, k is from 1 to M, with N being the number of

samples and M being the number of FERN bytes. Fk is the k-th FERN group.
Initialize: Maximum iteration number T and the current iteration t¼0. In-

itialized weights for both positive and negative samples.

(1) when yi¼1, =+
+

w i N1,
1 ;

(2) when yi¼-1, =−
−

w i N1,
1 .

Step 1: For each group Fk, build Naive Bayesian probability look-up table

( | )P F yk ;

Step 2: Select the best group σ ( )F t according to the Bayes error on the training
set, and define the decision function as

( ) = ( = ) − ( = − )σ σ σ( ) ( ) ( )h F P F y P F y, 1 , 1 .t
t t t

Step 3: Weights update by = · [ − ( )]σ
−

( )w w y h Fexpt i t i i t i
t

, 1, ; then normalize the

weights so as to keep ∑ =+w 1i t i, and ∑ =−w 1i t i, ;

Step 4: t¼tþ1. If t¼T, break; otherwise go to Step 1.

Output: The final classifier ( ) = ∑ ( )σ
=

( )F h FT t
T

t
t

1 .
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μ μ
Σ Σ

=
( ·( − ))

( + ) ( )

w

w w
S .

5
p n

T
p n

2

We can obtain the projection Σ−1 with Lagrange multipliers, where
Σ Σ Σ= +p n. It can be observed that Σ is a symmetric positive
semi-definite matrix, thus the SVD decomposition

Σ = ( ) = ( )( ) =− − − −U S U U S S U A AT T T1 1 1
2

1
2 exists, where = −A S U

1
2 . By

replacing Σp and Σn with ATA, we simplify Eq. (1) to

μ μ

μ μ

( ) = − ( ′ − ′ ) ( ′ − ′ )

+ ( ′ − ′ ) ( ′ − ′ ) + · ( )

x x x

x x 1 b. 6

p
T

p

n
T

n

Note that ′ =x xA and μ μ′ = A , indicating that ′x and μ′ are both in
the projection space. Second, a hash function ( ′ )h x b;i i i similar to
Eq. (4) is derived for each element of ′x .

The objective of our method is to minimize the Bayes error in
Eq. (2), which is different from the two-stage procedures discussed
in [38]. It is then used for training supervised hash functions in Eq.
(4). To the best of our knowledge, we are the first to utilize Bayes
error in the cost function of learning a Hamming embedding.
Notice that the full feature dimension d of the images is very high.
To reduce the cost, we perform subspace projection on each face
patchwith a relatively lower feature dimension, rather than on the
whole d dimensional feature space.

3.3. Boosted FERNs

Now Bayesian hashing could encode the high-dimensional
feature input x to a sequence of hash bits = ( … )f f f, , D1 , where

∈ { }f 0, 1i . To further utilize them for recognition, we propose to
model the bit stream with a random boosted FERNs framework
[52]. Fig. 2 shows our configuration of the boosted random FERNs.

In a general FERN framework, when given a bit-sequence f , we
partition it into M groups of size =S D

M
, obtaining a set of feature

vectors = ( … )F F F, , M1 . Each group Fi is called a FERN, and is
modeled with a Naive Bayesian classifier ( | )P F yi . By assuming that
all groups are independent, we could compute the joint prob-
ability for all FERNs ( | ) = ∏ ( | )=FP y P F yi

M
i1 . In our implementation,

we set S to 8 in most occasions and separately study the effect of S
in the experiments. In addition, the Boosted framework is adopted
to reduce possible redundancy among different groups. Each FERN
is modeled as a weak classifier. Then a GentleBoost, a variant of
AdaBoost classifiers, is trained to ensemble different FERNs.
Table 1 summarizes the training algorithm of the boosted FERNs.

When performing boost training, we restrict that each FERN
group can only be chosen once to reduce redundancy. Finally, a
decision function can be obtained:

∑( ) = { ( = ) − ( = − )}
( )=

F P F y P F y, 1 , 1 ,
7i

T

i i
1

where ≤T M is the number of selected groups. The calculation of
the decision function is very fast as it is actually the accumulation
of a set of look-up-tables (LUTs), which makes the prediction ex-
tremely efficient. In addition, we can further compress the model
by quantizing the float-point LUTs into 8-bit chars.

3.4. Bit permutation and model selection

It has been discussed in Section 3.2.2 that if we perform
Hamming embedding on the whole feature space with d to be very
large, the computation and storage costs of the projection proce-
dure will be huge. Thus we adopt patch-level Bayesian Hashing to
overcome this problem. While such operation also brings another
issue, i.e. how to exploit relationships among different patches. To
this end, we employ a bit-stream permutation technique to ex-
plore possible correlations. Fig. 2 shows the overall framework. We
produce a total of G permutations. With permutation, each group
contains bits which come from different patches. We define
the hash code of the g-th random permutation as

= { … }δ δ( ) ( )
f f f, ,g g g D,1 ,

, where δ ( ), denotes the indices after

permutation.
We train a boosted FERNs model ( )δF g for each permutation

δg, forming a set of Gmodels in total. Naturally, we could get better



Table 2
SFFS algorithm used for permutation selection.

Input: Feature grouping set after random permutation = { ≤ ≤ }F g G, 1g .

( )J k represents the accuracy with the permutation set k.
Initialize: Set = ∅0 and k¼0. Pre-set the required permutation number GS.
Step 1: Inclusion

• Select the best permutation = ( ∪ )+
∈ ⧹

F FJarg max
F k

k , where ⧹ k is the

relative complement of k in ;
• = ∪ = ++ +F k k; 1k k1 ;

Step 2: Conditional exclusion
• Select the worst permutation = ( − )−

∈
F FJarg max

F k
k ;

• If ( − ) > ( )− −FJ Jk k 1 , set = − = −− −F k k, 1k k1 , and go to Step 2;
otherwise go to Step 3.

Step 3: If ≥k GS , break; else go to Step 1.
Output: Selected subset of feature grouping set k .
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discrimination power with more permutations. However, it also
leads to possible redundancy, and more computation and storage
costs are required. To address this issue, we choose an optimal set
of permutation models using Sequential Forward Floating Search
(SFFS), achieving improved performance without any additional
cost. Table 2 gives the details of the SFFS algorithm.
Table 3
Accuracy and computation/storage comparison with Product Quantization and
Supervised Hashing with Kernels on FRGC. All the 3 methods use Boosted FERNs as
the classifier. Our method is consistently better.

Methods TPR@
FPR¼0.1 (%)

Training time
(Seconds)

Testing time
(Seconds)

Memory
(MB)

PQ [55] 89.50 20,915.8 3624.2 57.4
KSH [39] 59.20 433,569.6 683.6 73.2
Bayesian

Hashing
90.35 3873.3 213.9 34.2
4. Experiments

4.1. Datasets and experimental settings

4.1.1. FRGC
The Face Recognition Grand Challenge (FRGC) version 2 [53] is

designed to provide a comprehensive benchmark for evaluating
new face recognition technologies. We focus on experiment-4 (in
simple, FRGC-204), which has 12,776 training faces, 16,028 target
face images and 8014 query faces. The target set and query set are
taken under different environments, i.e. the former is under con-
trolled environment and the latter is under uncontrolled en-
vironment. Such setting makes the FRGC-204 to be very challen-
ging. Four landmarks (eye centers, nose tip and mouth center) are
provided for each face. And face images are normalized to
128�128 according to these landmarks. We extract n¼240 pat-
ches of different scales and ratios according to the landmark po-
sitions. And a mirror image is generated for each normalized face,
leading to another n¼240 patches. In the end, each face is re-
presented using 480 GLOH patches, with each patch described by a
136-dimensional feature.

We report the true positive rate at a fixed false positive rate of
0.1% (TPR@FPR¼0.1%), following the traditions on this dataset. In
addition, Receiver Operating Characteristic (ROC) curves are
adopted for some of the evaluated approaches.

4.1.2. LFW
The popular Labeled-Faces-in-the-Wild (LFW) dataset contains

13,233 images of 5749 individuals, collected from the Internet. We
use LFW-a, which is the aligned version of LFW, and employ si-
milar settings for data preprocessing following the previous works
on this dataset.

There are several benchmark evaluation protocols for LFW.
Here the unrestricted with label-free outside data protocol is
adopted. A 10-fold cross-validation experiment is conducted. In
each trial, we use nine subsets for training and one for testing. We
report the mean Equal Error Rate (EER) and also plot the ROC
curves.

4.1.3. YTF
The YouTube Faces (YTF) dataset [54] consists of 3425 YouTube

videos of 1595 individuals. An average of 2.15 videos are available
for each individual, and the average length of a video is 181.3
frames. 5000 video pairs are equally divided into 10 folds to form a
cross-validation evaluation setting. We follow the standard re-
stricted protocol defined in [54], i.e. one cannot access to the
subject identity labels. As the frames have been aligned, we simply
average the feature vectors of the frames within one video clip to
form a video feature vector. Recognition accuracy is reported fol-
lowing prior works.

4.2. Results and discussions

In order to analyze the impacts of different components and
parameters, we organize the experiments into several subsections.

4.2.1. Bayesian Hashing
In this section we compare our Bayesian Hashing with two

popular alternative hashing methods, Product Quantization (PQ)
[55] and Supervised Hashing with Kernels (KSH) [39]. For PQ, we
use the same number of bit groups as Bayesian Hashing (8160).
While for KSH, due to the expensive training cost, we only manage
to train 4800 hash functions (600 bytes). Bit-permutation is not
adopted for all the three methods, and the bit group size S is fixed
to 8. Table 3 summarizes the results on FRGC and Fig. 3(j) shows
the corresponding ROC curves.

As shown in the table, Bayesian Hashing shows superior per-
formance on all the evaluation terms. In particular, our Bayesian
Hashing outperforms KSH significantly. Even if under the same
settings (only 500 bytes are used), our method still shows much
better result (68.40% vs. 59.20%). Compared to PQ, the accuracy is
also a little better. More significantly, it indicates excellent com-
putational efficiency. The training/testing time of our method is
over 5� /10� faster than PQ, and over 100� /3� faster than KSH.
Finally, our memory cost is also the lowest one.

4.2.2. Boosted FERNs
The use of boosted FERNs classifier is one of the major com-

ponents of our system. We conduct an experiment on FRGC to
evaluate the capability of the boosted FERNs, by comparing its
results with SVM. Here we also set S¼8.

Table 4 shows the results (the bottom five rows). Obviously, it
could be observed that the boosted FERNs classification plays an
important role in our method. Replacing it with SVM, we obtain an
approximately 14% lower result using the same set of binary codes,
indicating the effectiveness of boosted FERNs. Besides, we also
train an SVM classifier on the raw floating point GLOH features. It
produces a similar accuracy, which is 0.5% higher than our
method. However, the proposed method requires much lower
computation and memory costs.

4.2.3. Impact of bit group size
The size S of the bit group (cf. Section 3.3) is an important

parameter. Using either a too small or a too large S, the Naive
Bayesian classifier may not be able to accurately model the prob-
ability distribution. In addition, we need to consider the time cost



Fig. 3. First column: results on FRGC, second column: results on LFW, third column: results on YTF. First row: performance with different sizes of bit groups (w/o bit-
permutation), second row: performance with different numbers of bytes (w/o bit-permutation), third row: performance with different numbers of bit permutations, fourth
row: ROC curves. See texts for more discussions. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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—a small S will produce more groups, and thus more LUT query
time will be needed.

Fig. 3 (a), (b) and (c) shows the performance vs. the number of
bits per group on FRGC, LFW and YTF datasets, respectively. Bit-
permutation is not adopted here. For FRGC and YTF, the perfor-
mance drops significantly when using more than 8 bits (2–3%).
Also, the performance is low when S¼2 for LFW (3% drop). When
S¼4, 6 or 8, the performance is relatively stable and consistently
good across all the datasets. In addition, it would cost double LUT
query time when S¼4, compared with S¼8. Thus, S¼8 is an ap-
propriate choice. In all the other experiments, we fix S¼8.

4.2.4. Impact of the number of FERN bytes
Our model assembles different bit groups using Boosted



Table 4
Results of our method and SVM on FRGC (the bottom five rows), in comparison
with state-of-the-art results (the top five rows).

Methods TPR@ FPR¼0.1% (%)

Baseline, eigenface [53] 12
GaborþKernel [6] 76
LTPþGaborþKernel [31] 88.5
GaborþFourier [25] 89
LPQ-fusion [56] 91.59
GLOH floatingþSVM 93.72
Bayesian HashingþSVM 79.78
Bayesian HashingþBoosted FERNs single 90.35
Bayesian HashingþBoosted FERNs perm-128 92.68
Bayesian HashingþBoosted FERNs SFFS-16 93.20

Table 5
Performance (EER7standard deviation) comparison with state-of-the-art ap-
proaches on LFW.

Methods EER (%)

Combined Joint Bayes [50] 90.9071.48
CMDþSLBP [26] 92.5871.36
VMRS [1] 92.0570.45
ConvNet-RBM [22] 91.7570.48
Fisher Vector Faces [57] 93.0371.05
High-dim LBP [2] 93.1871.07
HPEN [58] 95.2570.36

Bayesian HashingþBoosted FERNs single 92.5070.39
Bayesian HashingþBoosted FERNs perm-16 93.5370.79
Bayesian HashingþBoosted FERNs SFFS-8 93.7070.87

Table 6
Performance (Accuracy7standard deviation) comparison with state-of-the-art
approaches on YTF.

Methods Accuracy (%)

MBGS (LBP) [54] 76.4071.80
APEMþFusion [59] 79.0671.51
STFRDþPMML [60] 79.4872.52
VSOFþOSS [61] 79.7071.80
DDML [62] 82.3471.47

Bayesian HashingþBoosted FERNs single 78.9670.53
Bayesian HashingþBoosted FERNs perm-128 79.5670.54
Bayesian HashingþBoosted FERNs SFFS-16 80.8070.55
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framework. As discussed above, we fix the size of bit group S to 8,
indicating that each group could be represented by a byte, and
modeled as a FERN. We then study how the number of the se-
lected FERN bytes could affect the performance. In this experi-
ment, with boosting training, the model selects top-N FERN bytes
sequentially according to their contributions. Bit-permutation is
also not adopted here and will be evaluated in the next experi-
ment. Each GLOH block (8-dimensional; each patch has 17 blocks)
is encoded into one byte. Fig. 3(d), (e) and (f) plots the perfor-
mance vs. different numbers of bytes on FRGC, LFW and YTF,
respectively.

Some interesting observations could be obtained from the fig-
ures. First, the performance rises rapidly when the number of
bytes is very small, especially when <N 1000, on all the datasets.
Steep curves could be observed in the figures. Second, on FRGC
and YTF, a small portion of improvements are gained when

< <N1000 4000. While on LFW, very little improvement is gained.
Finally, when >N 4000, the accuracies tend to be stable. Very little
performance gains are obtained on FRGC and YTF. These ob-
servations indicate that we could achieve higher feature com-
pression rate than the original Bayesian Hashing, which already
yields 32� compression rate of the high-dimensional floating
point features. For example, if 4000 bytes are used, the feature
compression ratio is more than 64� with only 2% accuracy drop.
And if 1000 bytes are used, we can also get a competitive result
with over 256� feature compression ratio.

This experiment also reveals a very promising property of our
method. We can apply Hamming distance for fast coarse-level
search (modern CPU supports hardware instructions for comput-
ing Hamming distance) when the database is very large. We could
even make a progressively coarse-to-fine search strategy for large-
scale applications. For instance, it is feasible to build a first level
coarse search with just the top 1000 bytes, which can quickly
narrow down the search space for fine-grained computations with
more bytes.

4.2.5. Impact of bit permutation
This experiment studies the impact on bit-stream permutation.

We train a set of boosted FERNs models based on different random
permutations. Then different numbers of models are assembled to
carry out the task. Fig. 3(g), (h) and (i) shows the results on FRGC,
LFW and YTF, respectively (red curves). On FRGC and LFW, it is
clear that the accuracy grows along with the increase of shuffles,
especially at the beginning parts of the curves (# shuffles ≤8).
While on YTF, the performance drops a bit after 8 shuffles. As a
large number of shuffles may incur redundancy and also due to the
randomization factor, the performance may not be always stable
when using more shuffles.

Next we study the effectiveness of SFFS on all the datasets,
which is expected to solve the redundancy problem of the random
shuffles. As described above, a small subset of permutation models
are selected from many models by evaluating on a separate vali-
dation set with SFFS. Good and complementary models are se-
lected. For FRGC and YTF, we train a total of 128 models, and for
LFW, we only train 16 models because the training time for LFW is
much longer. As shown in Fig. 3(g), (h) and (i), SFFS is able to
further improve the results with only a small number of selected
permutations on all the datasets. Note that when large numbers of
permutations are selected (>16 for FRGC and YTF, and >8 for LFW)
by SFFS, the accuracies drop. It is not surprising because large
number of permutations will lead to redundancy as discussed
above, with the decrease on performance.
4.3. Comparison with state of the arts

Finally, we compare our method with several state-of-the-art
works on all the datasets. Results on FRGC, LFW and YTF are
summarized in Tables 4–6 respectively, where “perm-x” indicates x
random permutations and “SFFS-x” indicates x permutations se-
lected using SFFS. On all datasets, we achieve very competitive
results. One surprising result is that our approach outperforms the
deep learning based method on LFW [22]. It is quite appealing as
only traditional hand-crafted GLOH features are adopted in our
method. In addition, our method can be employed on any type of
features, including the popular deep learning based ones. We ex-
pect that a further gain may be obtained by replacing GLOH with
the recently developed deeply learning features. We further pre-
sent the ROC curves of our method and other compared ap-
proaches on LFW and YTF in Fig. 3(k) and 3(l) respectively. While
for FRGC, we only show the ROC curves of our method in Fig. 3(j),
as we do not have the data needed for plotting curves of the
compared works. Furthermore, Fig. 4 shows some successful or
failed examples on YTF. Finally, we would like to stress again that
our results are obtained with binary codes, which own the nice
property of very lower computation and storage costs. In contrast,
all the compared works rely on the expensive floating features.



Fig. 4. Some predicted examples on YTF. The predicted same/different pair faces are on the left/right. And the top two rows are successful examples; the bottom two rows
are failed examples.
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5. Conclusions

In this paper, we have introduced a method to derive optimal
Hamming embedding for high-dimensional features in visual re-
cognition tasks. Our method, called Bayesian Hashing, uses a su-
pervised Bayesian learning framework to generate binary codes. To
achieve high recognition performance, we have designed a boos-
ted FERNs classification framework to process the binary features.
In addition, a random permutation technique was adopted to
better exploit the bit correlations and train multiple classification
models, where a SFFS algorithm was applied to perform model
selection and fusion. Extensive experiments and comparative
studies in the context of face recognition clearly demonstrated
that the proposed method is able to achieve competitive perfor-
mance with significantly reduced computation and memory costs.

We would like to emphasize that, although the proposed
method was evaluated on the face recognition task, the Bayesian
Hashing method is a fairly general supervised hashing technique
and can be extended to various applications, such as large scale
image search, object recognition, and other problems beyond
computer vision.
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