Binary Optimized Hashing

Qi Dait, Jianguo Li?, Jingdong Wang?, Yu-Gang Jiang!
!School of Computer Science, Shanghai Key Lab of Intelligent Information Processing,
Fudan University, Shanghai, China
2Intel Labs China, Beijing, China
3Microsoft Research Asia, Beijing, China
{daiqi, ygj}@fudan.edu.cn, jianguo.li@intel.com, jingdw@microsoft.com

ABSTRACT

This paper studies the problem of learning to hash, which is
essentially a mixed integer optimization problem, contain-
ing both the binary hash code output and the (continuous)
parameters forming the hash functions. Different from ex-
isting relaxation methods in hashing, which have no the-
oretical guarantees for the error bound of the relaxations,
we propose binary optimized hashing (BOH), in which we
prove that if the loss function is Lipschitz continuous, the
binary optimization problem can be relaxed to a bound-
constrained continuous optimization problem. Then we in-
troduce a surrogate objective function, which only depends
on unbinarized hash functions and does not need the slack
variables transforming unbinarized hash functions to dis-
crete functions, to approximate the relaxed objective func-
tion. We show that the approximation error is bounded and
the bound is small when the problem is optimized. We ap-
ply the proposed approach to learn hash codes from either
handcraft feature inputs or raw image inputs. Extensive ex-
periments are carried out on three benchmarks, demonstrat-
ing that our approach outperforms state-of-the-arts with a
significant margin on search accuracies.

CCS Concepts

eComputing methodologies — Visual content-based
indexing and retrieval; Image representations; Neural
networks;

Keywords
Hashing; Binary Optimized Hashing; Image Retrieval; CNN

1. INTRODUCTION

Hashing has been attracting broad attention due to the
explosive growth of various kinds of data like documents,
images and videos. It aims at encoding input data to a set
of compact binary codes, while preserving some notion of
similarity of the original data in the Hamming space. With

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MM 16, October 15-19, 2016, Amsterdam, Netherlands
© 2016 ACM. ISBN 978-1-4503-3603-1/16/10. .. $15.00
DOL: http://dx.doi.org/10.1145/2964284.2964331

the compact hash codes, one can easily realize highly effi-
cient search applications with the Hamming distance under
significantly lower storage cost.

The early exploration on hashing began with the well-
known locality sensitive hashing (LSH) [4], which imposes
random projection on data to generate hash codes. LSH is
a data-independent hashing method, so that its results are
usually not satisfying. Realizing the limitation of the data-
independent hashing methods, many recent hashing tech-
niques try to exploit various machine learning paradigms to
learn effective hash functions from a given dataset, ranging
from unsupervised to supervised or even semi-supervised set-
tings [32, 31]. Recently, as deep learning has demonstrated
strong results on many visual recognition tasks [11], sev-
eral researches also proposed to learn hash codes from in-
put images in an end-to-end manner with deep learning [34,
15], which led to significant improvements over traditional
handcraft feature based hashing methods. All these data-
dependent methods are generally called learning to hash.

Learning to hash is essentially a mixed integer nonlinear
optimization problem with binary code outputs and contin-
uous parameters for hash functions. The problem is difficult
to be solved directly due to its NP-hard nature. Various
relaxations have been introduced, such as (1) continuous re-
laxation which discards the sign function and discrete con-
straints to solve one continuous problem and then thresholds
the continuous outputs to produce hash codes; (2) two-step
schemes which inference hash-bit first and train hash func-
tions with given hash-bits [18, 17, 27]. Although some meth-
ods in this category were claimed to be optimal with the
relaxed objective functions, there are no theoretical guaran-
tees for the error-bound of the relaxations.

Inspired by the works on discrete optimization [3, 22], this
paper proposes an optimal hashing method, namely binary
optimized hashing (BOH). We relax the binary variable to a
bounded continuous variable, and show that the binary pro-
gram is equivalent to a bound-constrained continuous op-
timization problem with an additional penalty function if
the objective function satisfies certain conditions. We fur-
ther introduce a surrogate objective function with respect to
unbinarize hash functions only, to approximate the relaxed
problem. We show that the approximation error is bounded
and the bound is small when the problem is optimized. We
apply the proposed approach to learn hash codes directly
from either handcraft feature inputs or raw image inputs in
a unified learning paradigm.

Extensive experiments show that coupling with neural
networks, BOH can achieve superior performance over the

state-of-the-art methods. In details, coupling with multi-
layer perceptron (MLP), BOH gives superior results over
compared methods for handcraft feature inputs; while cou-
pling with convolutional neural networks (CNN), BOH out-
performs all state-of-the-arts with a significant margin for
raw image inputs. The main contributions of this paper are
summarized as below:

(1) We relax the binary optimization problem to a bound-
constrained continuous optimization problem. We fur-
ther prove that the two problems are equivalent if the
loss functions satisfy certain conditions. Hence we de-
rive a surrogate objective function with respect only
to hash functions, so that we can learn hash codes in
a unified framework.

(2) We prove the feasibility of using two popular loss func-
tions: triplet ranking loss and contrastive loss. We ap-
ply BOH to learn hash codes from both the handcraft
feature inputs and raw image inputs.

(3) We demonstrate superior performance of the proposed
approach on popular benchmarks. Our approach out-
performs state-of-the-art approaches on both hand-
craft feature inputs and raw image inputs with clear
margins.

This paper is organized as follows. We introduce related
works in Section 2 and present details of the BOH in Sec-
tion 3. Section 4 discusses experimental settings and results.
Conclusions are drawn in Section 5.

2. RELATED WORKS

In this section we discuss related works in the following
three aspects.

Learning to hash can be roughly divided into the fol-
lowing three categories: unsupervised, supervised and semi-
supervised. Unsupervised methods try to preserve the in-
herent properties within data. Such properties include data
distributions (e.g., spectral hashing [33], kernelized locality
sensitive hashing [13, 14]), manifold structures (e.g., graph
hashing [21]) and various similarities in feature space (e.g.,
angular quantization hashing [5], spherical hashing [8]). Al-
though unsupervised hashing methods work well to preserve
distance/similarity in the feature space, many applications
also require to preserve semantical similarity in the Ham-
ming space. For this purpose, various supervised hashing
methods are proposed, ranging from metric learning to ker-
nel learning (e.g., LDAHash [29], supervised hash with ker-
nels [20], Hamming distance metric learning [24], supervised
discrete hashing [27]). In addition, as it is very expensive
to annotate large-scale datasets, it is practically needed to
learn hash codes with both labeled and unlabeled data (e.g.,
semi-supervised hashing [30]).

Deep learning based hashing has recently shown very
strong performance improvements over the shallow learning
counterparts. Semantic Hashing [26] employs a two-stage
learning (pretraining and fine-tuning) on deep generative
models to abstract input documents to several bits. Deep
hashing [2] seeks multiple hierarchical non-linear transfor-
mations to learn hash codes. Besides, convolutional neural
networks (CNN) provides a way to learn hash codes from
raw input in an end-to-end way. Specially, deep semantic
ranking hashing [35] presents a new ranking loss, preserv-
ing the similarity relationships between multi-label images.

Convolutional neural network hashing [34] also uses a two-
step learning framework. The first stage performs semantic
similarity matrix factorization to obtain hash codes, and the
second stage trains a CNN network to obtain hash functions
from raw image inputs. Deep neural network hashing [15]
uses triplet ranking loss to model the similarity relations be-
tween images. A divide-and-encode module is employed to
map the image features to approximate hash codes.

Different relaxations are implicitly or explicitly em-
ployed in learning to hash due to the NP-hard nature of the
mixed integer optimization problem. Most aforementioned
methods discard the discrete constraints to solve one con-
tinuous problem, and then threshold the continuous outputs
to be binary codes. This simplifies the optimization greatly,
but usually yields low-quality approximated solutions. Re-
cently, some novel relaxations are proposed. The two-step
schemes first produce binary codes with some discrete opti-
mization such as binary quadratic optimization [18], graph
cuts [17], semantic matrix factorization [34], discrete cyclic
coordinate descent [27], etc. After that, certain learning
techniques are employed to learn the hash functions with
the desired hash codes. Iterative multi-step schemes are
also proposed to optimize binary codes and hash functions
alternatively [19, 27].

3. BINARY OPTIMIZED HASHING

The purpose of learning-to-hash is to seek a set of hash
functions H(x) = {hi(x), ha(x), ..., ha(x)}, which map the
feature x to the Hamming space {0,1}%, obtaining a se-
quence of binary codes b = H(x), so that the similarity
in the Hamming space, defined from the Hamming distance
|[b; —bj]|1, is able to preserve some notion of similarity eval-
uated in the original feature space. In general, the objective
function can be written as follows,

min L(by,bs,--- ,bn)
s.t. b; € {0,1}* (1)
ble(mz),Z: 1,2,"'N,

where N is the number of training samples. Usually the
loss function L(-) is defined as the sum of loss functions over
cliques C = {c} with ¢ being a set of points, L(b1, bz, - ,bn)
= ccclbiy, ... biy,), (i1,..., i) = c¢). There are vari-
ous forms to formulate the loss function. In this paper, we
will study two widely-used forms: triplet ranking loss, in
which ¢ is a triplet (4, j, k) and contrastive loss where ¢ is a
point pair (i, 7).

The problem (1) is a mixed-integer optimization prob-
lem. Due to its NP-hard nature, the problem is solved with
various relaxations, such as continuous relaxation, two-step
schemes, and iteratively multi-step schemes as mentioned in
related works. Our solution starts from relaxing the binary
variable into a bounded continuous variable and introduc-
ing a penalty function. We first only consider the binary
variables in the problem (1) and show that the 0-1 program
is equivalent to a continuous optimization problem if the
objective function L(-) satisfies certain condition. Then we
take into consideration the hash function and relax the whole
problem into a continuous problem, which subsequently is
transformed to a surrogate objective function with respect
to only the hash functions.

3.1 Equivalent Continuous Problem

Let us consider the following generic 0-1 program,

min f(y)
sty €{0,1}%
and a transformed optimization problem,

min f(y) + A\é(y)

s.t. yel0,1]% ®)

where ¢(y) : R? = R to f(y) is a penalty term and X is the
penalty coefficient. It is shown in [3, 22] that under certain
conditions, the above two problems are equivalent.
Lemma 1: Let ||- || be a suitably chosen norm. Suppose the
following hypotheses hold:

a) f(y) is bounded when y € [0,1]%, and there exists an
open set A D {0,1}¢ and real number o, > 0, such that
VYyi1,y2 € A, f(-) satisfies the following Hélder condition:

1f(y1) = fy2)| < nllys — el (4)
b) It is possible to find ¢ : R? - R, such that:

(1) ¢ is continuous on [0,1]%;
(2) 6(y) =0,vy € {0,1}*; and 4(y) > 0,vy € (0,1)*

(3) Yz € {0,1}", there exists a neighborhood S(z) of z,
and a real €(z) > 0, such that:

$(y) > e(2)lly — 2", Yy € S(z) N (0,). (5)

Then, a real value \o exists, such that YA > Ao, the two
problems (2) and (3) are equivalent.

When a = 1, the condition (a) is also called Lipschitz
condition, and f(-) is called Lipschitz continuous.
Lemma 2: If fi(-) and f2(-) are Lipschitz continuous,
then f1(-) + f2(+) is also Lipschitz continuous.

In [22], the equivalence between (2) and (3) has been
proved for various forms of function ¢. This paper considers
a simple penalty form

oy) =y (e—y), (6)

where e = [1,1,...,1]T. This leads to the following equiva-
lent problem,

min f(y) + Ay’ (e — y)
sty € (0,1 @)

Lemma 3: Let f satisfy condition (a) of Lemma 1 with
a =1, ie f(y) is bounded when y € [0,1]¢ and also Lip-
schitz continuous on an open set A D {0, 1}d. Then, there
exists Ao € R such that for every A > Ao problems (2) and
(7) are equivalent.

We take two popular loss functions, triplet ranking loss [15,
16, 24] and contrastive loss as examples, and show that they
are Lipschitz continuous below.

3.1.1 Triplet Ranking Loss is Lipschitz Continuous
The triplet loss function is given as

f(y) = £(bs,bj, b)

(8)
max(0,1 — (||b; — bk“g — ||b; — ijg))v

where (i,k) is a similar pair and (¢,7) is a dissimilar pair
and y = [bf, bJT, b71”. In the following, we show that f(y)

is Lipschitz continuous, from which the overall objective
function, the summation of Lipschitz continuous functions,
L(bl, b2, ce ,bN) = Z(i,j,k)ec g(bl, bj, bk) is ObViOllSly Lip—
schitz continuous according to Lemma 2.

Lemma 4: Any continuously differentiable function is lo-
cally Lipschitz continuous.

Lemma 5: If f1(-) and f2(-) are Lipschitz continuous, then
max(f1(+), f2(+)) is also Lipschitz continuous.

Theorem 1: The triplet ranking loss function (8) is Lips-
chitz continuous.

Proof: Tt is obvious that 0 < f(y) < d*> + 1, i.e., f() is
bounded.

For the Lipschitz condition on an open set A, we separate
the max function to two functions g(y) and k(y), where
9(y) = 0, and K(y) = 1 — (|Ibi — by 2 — [[b; — by).

Suppose the open set A to be (—1,2)* (k = 3d). It is
obvious that function k(y) is continuously differentiable on
A. According to Lemma 4, k(y) is Lipschitz continuous on
A. On the other side, function g(y) is a constant function,
indicating that g(y) is also Lipschitz continuous on A. Then
two functions are both Lipschitz continuous.

According to Lemma 5, max(g(y), k(y)) is Lipschitz con-
tinuous. This completes the proof.

3.1.2 Contrastive Loss is Lipschitz Continuous

Contrastive loss [7] is widely used for metric learning with
only pairwise constraints. Suppose we have a pair of images
(Z,Z.), and (b,b.) are the corresponding hash codes. y =
[b; b.]. The contrastive loss function f is defined as:

F(y) = Lel|b = bel3 + (1 — lc) max(0,m — b — bel3) (9)

where [. = 1 indicates Z and Z. are similar, otherwise 0.
This loss function is indeed similar to LDAHash [29].
Theorem 2: The contrastive loss function (9) is Lipschitz
continuous.
Proof: According to Lemma 4 and previous proof, we can
easily prove the two parts u(y) = l.||b — b.||3 and v(y) =
(1 — 1) max(0,m — ||b — b.||3) are Lipschitz continuous on
the open set A = (—1,2)" separately.

According to Lemma 2, the linear combination of u(y)
and v(y) is also Lipschitz continuous. This completes the
proof.

3.2 Surrogate Objective Function

We derive hash function h(x) € {0,1} from its unbina-
rized version h(z), (h(xz) € [0,1] in this paper): h(z) =
h(z)+e, where |¢| = min(h(x), 1—h(z)). The hash function
optimization is equivalent to the quantization loss problem,

min || h(z) — ﬁ(m)||g

s.t. h(zx) € {0,1}. (10)

Considering the hash function as a constraint of the prob-
lem (1) and combining the optimization problem (10) into (1),
we have

N
min L(by,--- ,bn) +p Y _ [[bs — H(x:)|3
= (11)

st. b €{0,1}%i=1,2,---N,
where H(x;) = [k (2:), ha(a:), . . ., ha(e:)]. It can be proved

that a real value po exists, such that p > po, the problems
(11) and (1) are equivalent.

Architecture of BOH-MLP

Optimized
Loss

Figure 1: Architecture of BOH-MLP, in which we adopt
MLP as hash functions, and use triplet ranking loss for train-
ing, with handcraft features as inputs.

It is obvious that S | [|b; — H(;)||3 is Lipschitz continu-

ous. We have shown L(-) is Lipschitz continuous. Therefore,
problem (11) is relaxed to the following equivalent problem:

N
min L(bi + €1, by +en) + PZ lleill3
i=1
v (12)
+A) o(bi +€)
i=1

s.t. Bi+€i€ [O,l]d,i:1727”’N7

where El = FI(:IZ»L), €; = H(mz) — Fl(wl) = bz — Bz and ¢()
follows Equation (6).

Suppose F(bi,---,by) = L(b1,--- ,bn) + AN o(bi).
As both L(-) and ¢(-) are Lipschitz continuous, according to
Lemma 1, we have

‘F(bh 7bN)_F(517 75N)|
= |F(by + €1, - by +ex) — F(b1, -, by)|

N
<y el
i=1

This means the approximation error |F(B)—F(B)] is bounded,
where B = [by,...,by]. Therefore, we could transform
problem (12) to an approximate problem

(13)

N N
min L(b1, -+ ,bn) +p > llell3 + A o) 14)
1=1 =1

st. b €0,1%i=1,2,---N.

which can be approximately optimized with two subsequent
problems. First, we optimize unbinarized hash codes b; with

N
min L(i)h"' ,I;N)+)\Z¢(l~)i)7 (15)

s.t. i)z € [O, 1]d‘

Architecture of BOH-CNN

Binary
Optimized
Loss

~eSeSeh
NN

Figure 2: Architecture of BOH-CNN, in which we adopt
CNN as hash functions. Similar to Figure 1, triplet ranking
loss is used here, but with raw image inputs.

Then we optimize €; with

. N 2
min p>" el

- (16)
st. bit+e€{0,1}%i=12-- N

The second sub-problem is very simple with solution €;; =
—Eij if l;ij < 0.5 and otherwise €;; =1 — l;ij, from which we
can easily obtain the binarized hash codes b;. Equation (13)
proves that b; is a good approximation of b; with bounded
error. Along with the optimization, b; becomes closer and
closer to b;. We will verify this point in experiments (ref.
Section 4.2.3).
Considering the second term in the final objective func-
tion (15), we have (drop the subscript 4 for clarity)
¢(b) =b"(1-b)
> (min(b, 1 — b))? (17)

= lel3,

which indicates that ||€||2 is small when B reaches the op-
timal solution of the problem (15) and we choose an un-
binarized hash fucntion whose range is [0,1] implying € is
small. This means that the error bound in Equation (13) is
small. In other words, the solution of the problem (14) is an
accurate approximation of that of the problem (12).

Finally, the surrogate objective function of learning the
hash functions is rewritten as follow,

min L(H(z)) + \H(z)" (e — H(z)),
s.t. H(x) e [0,1]%

3.3 Model Details

(18)

3.3.1 Hash Functions

We formulate the unbinarized hash function b = h(x) us-
ing a neural network with the output based on a sigmoid

0.5 05
0.4 0.4
03 03

0.2 0.2

) m)

0
0 05 1 0 0.5 1

Code Values Code Values

Figure 3: Histogram of output values by CNN trained with
only the triplet ranking loss and the unified BOH loss. The
vertical axis represents the frequency ratio of samples falling
to certain intervals in the range [0,1]. Left: triplet ranking
loss. Right: unified BOH loss.

Table 1: Result comparison on the effectiveness of the uni-
fied BOH loss, using 48 bits output and triplet ranking loss.
The table above shows the results of mAP, and the table
below shows the results of PQR<2.

mAP
Method CIFAR-10 [SVHN [NUS-WIDE
MLP 0.400 0.799 0.602
MLP+Regularization 0.352 0.800 0.603
BOH-MLP 0.420 0.818 0.623
CNN 0.627 0.914 0.831
CNN+Regularization 0.521 0.908 0.801
BOH-CNN 0.657 0.927 0.855
PQR<2
Method CIFAR-10 | SVHN [NUS-WIDE
MLP 0.421 0.774 0.600
MLP+Regularization 0.424 0.795 0.601
BOH-MLP 0.434 0.823 0.615
CNN 0.563 0.918 0.796
CNN+Regularization 0.220 0.710 0.327
BOH-CNN 0.666 0.924 0.839

function s(t) = H% (€ [0,1]), which ensures that the er-
ror bound given in the Equation (13) is not large, as well as
that the output satisfies the border constraint [0, 1]. The in-
put of the neural network could be either handcraft features
or raw images, which leads to different architectures.

For the handcraft feature inputs, we take multi-layer per-
ceptron (MLP) as hash functions, denoted as BOH-MLP.
Figure 1 illustrates an architecture example with triplet rank-
ing BOH loss. The inputs of BOH-MLP are dimension-
fixed handcraft feature vectors, followed by several fully-
connection (FC) layers, where the last FC layer is of size d,
indicating the number of output hash bits. A sigmoid layer
is connected to the last FC layer, ensuring the output values
are in the range [0, 1].

For the raw image inputs, we take CNN as hash func-
tions, and learn hash codes in an end-to-end manner, de-
noted as BOH-CNN. Figure 2 illustrates an architecture ex-
ample also with triplet ranking BOH loss. We do not train
CNN hash functions from scratch, but take parameters from
the pre-trained CNN models (i.e. on ImageNet etc), and
fine-tune the network parameters with stochastic gradient
descent (SGD).

As it is trivial to get gradient from triplet ranking loss
and contrastive loss, we omit the derivations here.

Table 2: The mAP (table above) and PQR<2 (table below)
of BOH with contrastive loss (contra. in short) and triplet
ranking loss, using 48 bits output.

mAP
Method CIFAR-10 [SVHN | NUS-WIDE
BOH-MLP Contra. 0.383 0.799 0.599
BOH-MLP Triplet 0.420 0.818 0.623
BOH-CNN Contra. 0.608 0.892 0.651
BOH-CNN Triplet 0.657 0.927 0.855
PQR<2
Method CIFAR-10 | SVHN | NUS-WIDE
BOH-MLP Contra. 0.422 0.779 0.591
BOH-MLP Triplet 0.434 0.823 0.615
BOH-CNN Contra. 0.370 0.893 0.349
BOH-CNN Triplet 0.666 0.924 0.839

3.3.2 Additional Regularization Term

In addition to the aforementioned two kinds of losses, we
introduce one regularization term

d(y) = [b+b" —ell3, (19)

where y = [b;b7], b and b~ are hash codes of dissimilar
images, and e is a vector with all elements being 1. The
motivation behind this term is that dissimilar images should
have opposite hash codes, i.e., they should have a larger
Hamming distance.

It is easy to prove that ¢ (y) is Lipschitz continuous. We
therefore define a unified loss by combining triplet ranking
loss or contrastive loss f(-) with the regularization term

f) +xy" (e —y) + B(y), (20)

where f is a hyper parameter, which controls the strength
of regularization.

According to Lemma 2, the unified BOH loss is also Lips-
chitz continuous. We optimize problem (18) with this unified
loss function.

3.3.3 Complexity Analysis

The training complexity of BOH-MLP is the same as MLP
based hashing method, such as HDML [24]. Besides, BOH-
CNN also has the same training complexity as the CNN
baseline like DNNH [15]. For the testing part, the computa-
tion complexity of two-layer BOH-MLP is O((d; +do) X dp),
while d;, dn and d, are the dimension of input features,
hidden neuron node size, and number of output hash bits.
The testing complexity of BOH-CNN depends on the CNN
structure used. However, it is generally with same order as
DNNH [15].

4. EXPERIMENTS

4.1 Datasets and Experimental Settings

‘We conduct comprehensive experiments on three datasets,
CIFAR-10 [10], SVHN [23] and NUS-WIDE [1], and compare
our proposed method with several state-of-the-art hashing
methods.

CIFAR-10 consists of 60K images of size 32 x 32, which
are categorized into 10 classes, with 6K images per class.
Each image has a unique label. We follow the settings of
[34, 15], if there are no additional explanations. 1K images

045 : CIFAR-10 CIFAR-10
BOH-CNN/CIFAR-10
0.4 BOH-CNN/SVHN | 05 T 05
BOH-CNN/NUS-WIDE an:::::
035f = BOH-MLP/CIFAR-10 |
----- BOH-MLP/SVHN o 04 /L - EDE
0.3 BOH-MLP/NUS-WIDE !y =l 0.4 1B CgA-ITQ
g < o3| Tan
3 0.25 ® o l/ SH
2 c < 0.3 — LSH
5 02 S 1S I
i} @ 0.2
0.15]
o 0.2
o1 0.1 e
005 o 0.1 '
; | i ; 12 24 36 48 12 24 36 48
5000 10000 15000 20000 25000
lterations # Bits # Bits

Figure 4: Average error bound vs. number of
iterations. Here the triplet ranking loss function
is used, with 48 bits hash codes.

(100 images per class) are randomly sampled to form the
test query set. For the unsupervised methods, the training
set contains the rest 59K images, while for the supervised
methods, we randomly sample 5K images (500 images per
class) for training. One exception is that in Sec. 4.3, we add
one more additional training setting.

SVHN is a real-world image dataset which contains over
600K small 32 x 32 digits images. These images are split
into three subset, named train set, test set and extra set.
Following the settings in [15], we randomly select 1K images
(100 images per class) from the whole set as test queries.
For the unsupervised methods, rest of the images form the
training set, while for the supervised methods, we randomly
sample 5K images (500 images per class) for training. When
testing, we use all the remaining images (over 600K) as query
database.

NUS-WIDE contains about 270K Flickr images associ-
ated with 81 tags. Unlike CIFAR-10 and SVHN, each image
in NUS-WIDE may have multiple tags. We follow the set-
tings of [21, 15]. We only use 21 most frequent tags, where
each tag has at least 5K images. We randomly sample 2,100
images (100 images per tag) to form the test query set. For
the unsupervised methods, all the remaining images are used
as training data. For the supervised methods, we randomly
sample 10,500 images (500 per tag) for training.

For BOH-MLP, we use 512-dimensional GIST feature [25]
for CIFAR-10/SVHN, and the provided 500-dimensional bag-
of-words feature for NUS-WIDE. We design BOH-MLP with
two hidden FC layers for all our experiments. The number of
hidden neurons are 250 and 100 for the two layers, respec-
tively. For BOH-CNN, we use raw image inputs directly.
Different network structures are used for different datasets.
For NUS-WIDE and CIFAR-10, we take the VGG-16 model
[28] as our network structure. For SVHN, a smaller net-
work structure is used, which contains three convolutional
layers and two FC layers. The optimal values for hyper pa-
rameters # and X in Equation (20) are determined on the
training set in a cross-validation manner. Both BOH-MLP
and BOH-CNN are implemented using Caffe [9].

We adopt the following four widely used metrics to eval-
uate the results: (1) mean average precision (mAP), (2)
mean precision within Hamming radius 2 (in short PQR<2),
(3) precision-recall curves, and (4) precision of top returned
neighbors. In particular, on NUS-WIDE, we compute the

Figure 5: The mAP (right) and PQR<2 (left) of the compared methods on
CIFAR-10 with the number of hash bits ranging from 12 to 48. The number
of used training samples is 5,000.

mAP on top-5000 returned results. For PQR<2, if a query
has no neighbors within radius 2, we treat the query with
Zero precision.

4.2 Design Evaluations

In this section we evaluate several design factors which
affect the performance of our method.

4.2.1 Effectiveness of the Unified BOH Loss

One may be interested in knowing how much the unified
BOH loss can contribute to the performance. To answer
this question, we carry out experiments for the triplet rank-
ing loss with the following three kinds of settings: 1) MLP
or CNN trained with triplet ranking loss; 2) MLP or CNN
trained with triplet ranking loss plus the regularization term
from Equation 19; 3) MLP or CNN trained with the unified
BOH loss (triplet ranking loss under BOH relaxation) from
Equation 20. We set the number of hash bits d = 48.

Table 1 lists the comparison results. On CIFAR-10, the
unified BOH loss reaches 2% and 3% gains on mAP with
MLP and CNN hash function respectively. On SVHN, the
performance gains are 1.9% and 1.3% for MLP and CNN
respectively. And on NUS-WIDE, 2.1% and 2.4% improve-
ments are observed. This shows that the improvements
are consistently large over both CNN (strong) and MLP
(weak) baseline. It is interesting to note that pure MLP or
CNN with regularization term even yields noticeable accu-
racy drops to the counter part with the same settings. For
instance, the mAP drops 5% and 10% on CIFAR-10 from
the model trained with triplet ranking loss only. In terms of
P@QR<2 metric, the accuracy drops are even larger. This is
due to the fact that MLP or CNN training with triplet loss
does not guarantee optimal hash value outputs. We further
present a visual illustration in Figure 3, which shows the
histogram distribution of the hash values by CNN trained
with triplet loss and unified BOH loss. It is obvious that
BOH produces values mostly closer to 0 and 1, indicating
the optimization nature of the method.

The results indicate that merely using regularization term
does not bring performance improvement. On the contrary,
it even hurts the performance seriously. Therefore, we con-
clude that the unified BOH loss as a whole is the most ef-
fective way for learning hash codes.

Table 3: The mAP (table above) and PQR<2 (table below)
of HDML and BOH-HDML, with 48 bits output.

mAP
Method CIFAR-10 | SVHN | NUS-WIDE
HDML 0.273 0.679 0.544
BOH-HDML 0.306 0.714 0.582
PQR<2
Method CIFAR-10 | SVHN [NUS-WIDE
HDML 0.348 0.798 0.523
BOH-HDML 0.369 0.807 0.575

4.2.2 Triplet Ranking Loss vs. Contrastive Loss

In this experiment, we compare the performance of triplet
ranking loss and contrastive loss under the unified BOH
framework. Both BOH-MLP and BOH-CNN are evaluated,
with the number of output hash bits d = 48.

Table 2 lists the comparison results on the three datasets.
It shows that triplet ranking loss performs much better than
contrastive loss on all metrics for these datasets. Specially,
triplet ranking loss yields 1.9~20.4% performance gain over
contrastive loss on the mAP metric. For the PQR<2 metric
on CNN based solutions, the differences are 29.6%, 49% and
3.5% on CIFAR-10, NUS-WIDE and SVHN respectively,
where the results are much lower on the former two datasets.
The reasons are two-fold. First, contrastive loss yields quite
a few query cases that have no returned results within Ham-
ming distance radius 2, and we treat these as zero precision
so the P@QR<2 accuracy is much lower. Second, the triplet
ranking loss is naturally good for ranking so it has better
top-ranked retrieval results. Based on these results, we use
the triplet ranking loss in the following studies.

4.2.3 Convergence of BOH

It has been shown in Sec. 3.2 that we get an approximate
problem (14) by optimizing the surrogate objective function.
The approximation error is bounded by ||e||*, as in (13). The
optimization will yield the approximation error converged
to a small value. In order to verify such approximation, we
evaluate the error bound in this experiment.

Figure 4 illustrates the average error bound vs. number
of iterations. Suppose the hash code is d bits, the average
error bound is defined as ||€||* /d over all evaluating samples.
We use triplet ranking loss here, and set the number of hash
bits d = 48. We compute the average error bound every 250
iterations. It could be observed that the average error bound
decreases gradually when training is performed. The error
bound becomes stable and keeps at a low value after certain
number of iterations, revealing that the obtained solution
is very close to the optimal binarized solution. Besides, it
also demonstrates that BOH-CNN could achieve much lower
error bound than BOH-MLP.

4.2.4 Generalization to Existing Hashing Methods

The proposed BOH loss is fairly generic. It could be ap-
plied to some existing hashing methods, especially for those
with triplet ranking loss. Here, we consider extending our
BOH loss to HDML [24], which defines the loss as

L(w) = 3 lirpree(b(3 w), b5 w), b5 w)) + 5 [l

where {x*,x, 2"} is a triplet, b(z;w) is the hash func-

Table 4: mAP and PQR<2 of various methods on CIFAR-
10 with 48 bits codes. The “# training” column indicates
the number of training samples used.

[Method | # training | mAP | PQR<2 |

LSH 5000 0.120 0.168
SH 5000 0.130 0.017
BRE 5000 0.196 0.028
CCA-ITQ 5000 0.295 0.370
KSH 5000 0.356 0.273
FastHash 5000 0.391 0.194
SDH 5000 0.351 0.416
BOH-MLP 5000 0.420 0.434
FastHash 59000 0.581 0.162
SDH 59000 0.509 0.529
BOH-MLP 59000 0.626 0.598

tion with parameter w, and lripies(+) is triplet ranking loss.
HDML adopts perceptrons as hash functions, and optimizes
it with triplet ranking loss plus one matrix norm regulariza-
tion term. In this study, we replace the regularized triplet
ranking loss with the proposed BOH loss, and use one-layer
perceptron with sigmoid activation as hash functions. We
evaluate the performance on three datasets with 48 hash
bits. The results are shown in Table 3. It could be observed
that we gain substantial improvement with BOH loss, which
demonstrates the generalization capability of the proposed
method.

4.3 Result Comparison on Handcraft Features

We first compare BOH-MLP with existing state-of-the-art
methods, including LSH [4], SH [33], BRE [12], CCA-ITQ
[6], KSH [20], FastHash [17] and SDH [27]. We conduct
experiments on CIFAR-10. Besides the regular 5K training
samples, we also use one additional 59K training samples for
SDH, FastHash and the proposed BOH-MLP. Note that for
fair comparison, we use handcraft features as inputs for all
the methods.

Table 4 shows the mAP and PQR<2 results with 48 bits
output. We see that BOH-MLP achieves promising results
on both training settings. For instance, when the number
of training samples is 5K, the mAP of BOH-MLP exceeds
FastHash by 2.9% and SDH by 6.9%. In addition, it is not
surprising that when we use more training samples (59K),
the performance of all the methods becomes better. In par-
ticular, BOH-MLP achieves the best performance on mAP
(0.626) and PQR<2 (0.598), with improvements of 20.6%
and 16.4% respectively over 5K training set. FastHash also
achieves substantial improvement on mAP (19% improve-
ment). However, its performance on PQR<2 is very poor
(0.162). The poor P@R<L2 of FastHash is consistent with
the observations in [27]. Besides, SDH obtains approxi-
mately 16% improvement on mAP and 11% improvement
on PQR<2. Moreover, by observing Table 1 and 4 (5K
training samples), we can see that MLP achieves similar
performance to FastHash (40% vs. 39.1%). The high-bar
baseline of MLP (without BOH loss) is majorly due to the
triplet ranking loss we used. However, when BOH loss is
applied, the BOH-MLP achieves even better performance
(42%). This improvement is substantial and verifies the su-
periority of the proposed method.

Figure 5 further shows the performance over different out-
put hash bits. BOH-MLP shows stable improvements on

FastHas

SDH

Figure 6: Top returned neighbors of BOH-CNN, FastHash, SDH and KSH, with 48 bits on NUS-WIDE. The images surrounded

by red bounding boxes are negative neighbors.

Table 5: The mAP of BOH and state-of-the-art methods on CIFAR-10 and NUS-WIDE. For NUS-WIDE, we compute mAP
on top-5000 returned samples. To ensure a fair comparison, we use 5K training samples for CIFAR-10.

Method CIFAR-10 SVHN NUS-WIDE
12 bits | 24 bits [32 bits | 48 bits [[12 bits [24 bits | 32 bits | 48 bits [| 12 bits | 24 bits | 32 bits | 48 bits
LSH [4] 0.121 0.126 0.120 0.120 0.110 0.122 0.120 0.128 0.403 0.421 0.426 0.441
SH [33] 0.131 0.135 0.133 0.130 0.140 0.138 0.141 0.140 0.433 0.426 0.426 0.423
BRE [12] 0.159 0.181 0.193 0.196 0.165 0.206 0.230 0.237 0.485 0.525 0.530 0.544
CCA-ITQ [6] 0.264 0.282 0.288 0.295 0.428 0.488 0.489 0.509 0.435 0.435 0.435 0.435
KSH [20 0.303 0.337 0.346 0.356 0.469 0.539 0.563 0.581 0.556 0.572 0.581 0.588
SDH [27 0.203 0.340 0.354 0.351 0.317 0.746 0.761 0.781 0.530 0.546 0.536 0.582
FastHash [17] 0.293 0.345 0.365 0.391 0.689 0.768 0.783 0.802 0.496 0.568 0.596 0.613
BOH-MLP 0.367 0.398 0.408 0.420 0.791 0.803 0.806 0.818 0.574 0.605 0.613 0.623
CNNH [34 0.465 0.521 0.521 0.532 0.897 0.903 0.904 0.896 0.623 0.630 0.629 0.625
DNNH [15 0.552 0.566 0.558 0.581 0.899 0.914 0.925 0.923 0.674 0.697 0.713 0.715
BOH-CNN 0.620 0.633 0.644 0.657 0.904 0.923 0.926 0.927 0.786 0.834 0.837 0.855

both mAP metric and PQR<2 metric, while some other
methods even show accuracy drops on the PQR<2 metric
when the number of output bits surpass a threshold.

4.4 Result Comparison on Raw Image Inputs

We then compare BOH to state-of-the-art methods on raw
image inputs, which are usually based on end-to-end deep
learning framework. The compared methods are CNNH [34]
and DNNH ([15].

Table 5 shows the comparison results of mAP on the three
datasets. The bottom part of the table lists the results with
raw image inputs, while the top part of the table still keeps
some results with the handcraft features. The results clearly
show the power of end-to-end deep learning over shallow
learning. Figure 7 further illustrates PQR<2 over different
hash bits, precision-recall curve and precision of top returned
images at 48 bits. Besides, Figure 6 shows some retrieval
results of several methods, with 48 bits on NUS-WIDE.

Our method produces very promising results. Compared
with the deep learning based method DNNH, BOH-CNN

achieves a fairly significant improvement. For instance, BOH-
CNN gains an increase of 7.6%, 0.4% and 14% in terms
of mAP at 48-bit outputs on CIFAR-10, SVHN and NUS-
WIDE, respectively. Note that DNNH is also based on
triplet ranking loss under the same CNN framework. As
CNN does not explicitly generate binary codes, DNNH then
presents a divide-and-encode module to approximate hash
codes from the CNN outputs. The approximation is much
weaker than our theoretical guaranteed solution, which is
the reason that it produces much worse results.

5. CONCLUSION

This paper proposes binary optimized hashing (BOH), in
which we prove that if the loss function is Lipschitz con-
tinuous, the mixed integral hashing learning problem can
be relaxed to a bound-constrained continuous optimization
problem. We introduce a surrogate objective function to ap-
proximate the relaxed objective function. We show that the

CIFAR-10 SVHN NUS-WIDE
1] 09][> BOH-CNN
08 © BOH-MLP
DNNH
Q 9 Qo CNNH
\ \ A © FastHash
o o o © SDH
® ® ® KSH
c c c CCA-ITQ
.8 .g .g o BRE
B4 = - o SH
o o o
Bits # Bits
(a) (c)
CIFAR-10 NUS-WIDE
1
[BOH-CNN
% © BOH-MLP
0.9 & DNNH
CNNH
© FastHash
5 5 5 % ke
(2] (%) (%]
S S S CCA-ITQ
o 9] © © BRE
o o o © SH
o LSH
0
0] 0.2 0.4 0.6 0.8 1
Recall
(e)
CIFAR-10 SVHN
1 [| 09 1]'> BOH-CNN
o BOH-MLP
% oo o o o o o ? 08 | DNNH
0.8 CNNH
0.7 ‘| o FastHash
c c [| c o SDH
2 2 206 KSH
© G 0.6 G ¢ CCA-TQ
o < 2 05 o BRE
o o o o SH
o LSH
0.4 04
0.3
02 | 02 | !

100 200 300 400 500 600 700 800 900 1000
Top returned images

(8)

100 200 300 400 500 600 700 800 900 1000

Top returned images

(h)

100 200 300 400 500 600 700 800 900 1000

Top returned images

(i)

Figure 7: First row: PQR<2 over different numbers of bits. Second row: precision-recall curves with 48 bits. Third row:
precision of top returned images. First column: on CIFAR-10. Second column: on SVHN. Third column: on NUS-WIDE.

approximation error is bounded, and bound is small when
the problem is optimized.

The proposed approach is applied to learn hash codes from
either handcraft feature inputs or raw image inputs in an
end-to-end manner. Experiments are carried out on three
benchmarks, which clearly demonstrate that our approach
outperforms the state-of-the-arts (both traditional hashing
techniques and deep learning based hashing techniques) with
a significant margin on search accuracies. Future works are
on the extension of the proposed BOH framework to other
loss functions and different learning to hash problems like
unsupervised hashing.

Acknowledgments
This work was supported by China’s National 863 Program

(#2014AA015101) and a grant from NSF China (#U1509206).

6. REFERENCES

[1] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and

Y. Zheng. Nus-wide: a real-world web image database
from national university of singapore. In CIVR, 2009.
V. Erin Liong, J. Lu, G. Wang, P. Moulin, and

J. Zhou. Deep hashing for compact binary codes
learning. In CVPR, 2015.

F. Giannessi and F. Tardella. Connections between
nonlinear programming and discrete optimization. In
Handbook of Combinatorial Optimization. Springer,
1999.

A. Gionis, P. Indyk, R. Motwani, et al. Similarity
search in high dimensions via hashing. In VLDB, 1999.
Y. Gong, S. Kumar, V. Verma, and S. Lazebnik.
Angular quantization-based binary codes for fast
similarity search. In NIPS, 2012.

2]

3]

[4]

[5]

[6]

[19]
[20]

[21]

Y. Gong and S. Lazebnik. Iterative quantization: A
procrustean approach to learning binary codes. In
CVPR, 2011.

R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality
reduction by learning an invariant mapping. In CVPR,
2006.

J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon.
Spherical hashing. In CVPR. IEEE, 2012.

Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T. Darrell.
Caffe: Convolutional architecture for fast feature
embedding. arXiv preprint arXiw:1408.5093, 2014.

A. Krizhevsky and G. Hinton. Learning multiple
layers of features from tiny images, 2009.

A. Krizhevsky, I. Sutskever, and G. E. Hinton.
Imagenet classification with deep convolutional neural
networks. In NIPS, 2012.

B. Kulis and T. Darrell. Learning to hash with binary
reconstructive embeddings. In NIPS, 2009.

B. Kulis and K. Grauman. Kernelized locality-sensitive
hashing for scalable image search. In ICCV, 2009.

B. Kulis and K. Grauman. Kernelized
locality-sensitive hashing. TPAMI, 2012.

H. Lai, Y. Pan, Y. Liu, and S. Yan. Simultaneous
feature learning and hash coding with deep neural
networks. In CVPR, 2015.

X. Li, G. Lin, C. Shen, A. Hengel, and A. Dick.
Learning hash functions using column generation. In
ICML, 2013.

G. Lin, C. Shen, Q. Shi, A. Hengel, and D. Suter. Fast
supervised hashing with decision trees for
high-dimensional data. In CVPR, pages 1963-1970,
2014.

G. Lin, C. Shen, D. Suter, and A. Hengel. A general
two-step approach to learning-based hashing. In
I1CCV, pages 2552-2559, 2013.

W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete
graph hashing. In NIPS, pages 3419-3427, 2014.

W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang.
Supervised hashing with kernels. In CVPR, 2012.

W. Liu, J. Wang, S. Kumar, and S.-F. Chang.
Hashing with graphs. In JCML, 2011.

(22]

23]

[24]

(25]

(26]

27]

(28]

29]

(30]

(31]

(32]

33]

(34]

35]

S. Lucidi and F. Rinaldi. Exact penalty functions for
nonlinear integer programming problems. Journal of
optimization theory and applications, 2010.

Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu,
and A. Y. Ng. Reading digits in natural images with
unsupervised feature learning. In NIPS workshop on
deep learning and unsupervised feature learning,
volume 2011, 2011.

M. Norouzi, D. M. Blei, and R. R. Salakhutdinov.
Hamming distance metric learning. In NIPS, 2012.
A. Oliva and A. Torralba. Modeling the shape of the
scene: A holistic representation of the spatial
envelope. 1JCV, 2001.

R. Salakhutdinov and G. Hinton. Semantic hashing.
International Journal of Approrimate Reasoning,
50(7):969-978, 2009.

F. Shen, C. Shen, W. Liu, and H. T. Shen. Supervised
discrete hashing. In CVPR, 2015.

K. Simonyan and A. Zisserman. Very deep
convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

C. Strecha, A. M. Bronstein, M. M. Bronstein, and
P. Fua. Ldahash: Improved matching with smaller
descriptors. IEEE TPAMI, 2012.

J. Wang, S. Kumar, and S.-F. Chang. Semi-supervised
hashing for large-scale search. TPAMI, 2012.

J. Wang, W. Liu, S. Kumar, and S.-F. Chang.
Learning to hash for indexing big data - a survey.
Proceeding of The IEEE, 2016.

J. Wang, H. T. Shen, J. Song, and J. Ji. Hashing for
similarity search: A survey. CoRR, abs/1408.2927,
2014.

Y. Weiss, A. Torralba, and R. Fergus. Spectral
hashing. In NIPS, 2009.

R. Xia, Y. Pan, H. Lai, C. Liu, and S. Yan. Supervised
hashing for image retrieval via image representation
learning. In AAAI 2014.

F. Zhao, Y. Huang, L. Wang, and T. Tan. Deep
semantic ranking based hashing for multi-label image
retrieval. In CVPR, 2015.

