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Human Action Recognition in Unconstrained

Videos by Explicit Motion Modeling
Yu-Gang Jiang, Qi Dai, Wei Liu, Xiangyang Xue, and Chong-Wah Ngo

Abstract— Human action recognition in unconstrained videos
is a challenging problem with many applications. Most
state-of-the-art approaches adopted the well-known bag-of-
features representations, generated based on isolated local
patches or patch trajectories, where motion patterns, such as
object–object and object-background relationships are mostly
discarded. In this paper, we propose a simple representation
aiming at modeling these motion relationships. We adopt global
and local reference points to explicitly characterize motion
information, so that the final representation is more robust to
camera movements, which widely exist in unconstrained videos.
Our approach operates on the top of visual codewords gener-
ated on dense local patch trajectories, and therefore, does not
require foreground–background separation, which is normally
a critical and difficult step in modeling object relationships.
Through an extensive set of experimental evaluations, we show

that the proposed representation produces a very competitive
performance on several challenging benchmark data sets. Further
combining it with the standard bag-of-features or Fisher vector
representations can lead to substantial improvements.

Index Terms— Human action recognition, trajectory, motion
representation, reference points, camera motion.

I. INTRODUCTION

H
UMAN action recognition has received significant

research attention in the field of image and video

analysis. Significant progress has been made in the past two

decades, particularly with the invention of local invariant

features and the bag-of-features representation framework. For

example, currently a popular and very common solution that

produces competitive accuracy on popular benchmarks is to

employ the bag-of-features representation on top of

spatial-temporal interest points (STIP) [1], [2] or the

temporal trajectories of frame-level local patches (e.g., the

dense trajectories by Wang et al. [3], [4]).
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Fig. 1. Illustration of the proposed approach. (a) A video frame of a
kissing action. (b) Local patch trajectories, with the largest trajectory cluster
shown in green. (c) Amended trajectories by using the mean motion of
the green cluster as a global reference point; See details in Section IV-A.
(d) The original patch trajectories, with a trajectory on a person’s head shown
in red (circled). (e) Amended trajectories by using the motion of the red
trajectory as a local reference point; The relative motion patterns w.r.t. the
red trajectory (as visualized in (e)) are quantized into a pairwise trajectory-
codeword representation; See details in Section IV-B. This figure is best
viewed in color.

One disadvantage of the typical bag-of-features approach

is that it ignores the motion relationships among foreground

objects or between the objects and the background scene.

Apparently such motion patterns are important for recognizing

many human actions and thus should be incorporated into a

recognition system. This is particularly necessary when the

target videos are captured under unconstrained environment

with severe camera motion, which often hinders the acquisition

of the real motion of foreground objects (e.g., consider the case

of a camera moving at the same pace with a person).

In this paper, we propose an approach to model the motion

relationships among moving objects and the background.

We adopt two kinds of reference points to explicitly char-

acterize complex motion patterns in the unconstrained videos,

in order to alleviate the effect incurred by camera movement.

Figure 1 illustrates our proposed approach. Tracking of local

frame patches is firstly performed to capture the pixel motion

of the local patches. With the trajectories, we then adopt a

simple clustering method to identify the dominant motion,

which is used as a global motion reference point to calibrate

1057-7149 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



3782 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 24, NO. 11, NOVEMBER 2015

the motion of each trajectory. As will be discussed later,

although the identified global motion reference may not be

accurate, it helps uncover at least some motion relationships

in the scene. In addition, to further capture the relationships

of moving objects, we treat each trajectory as a local motion

reference point, which leads to a rich representation that

encapsulates both trajectory descriptors and pairwise relation-

ships. Specifically, the trajectory relationships are encoded

by trajectory codeword pairs in the final representation.

Since each trajectory codeword represents a unique (moving)

visual pattern (e.g., a part of an object), the motion among

objects/background can be captured in this representation.

With the local reference points, the resulted representation is

naturally robust to camera motion as it only counts the relative

motion between trajectories, which is considered as the main

contribution of this work.

Although very simple in its form, our approach has the

following advantages. First, it has been widely acknowledged

that motion patterns, particularly the interaction of moving

objects, are very important for recognizing human actions

(e.g., the distance changes between two people in action

“kissing”), and the modeling of such motion interactions in

unconstrained videos is difficult due to camera motion. Using

trajectory-based pairwise relative motion is a desirable solution

to uncover the real object movements in videos. On the other

hand, we notice that there have been several works exploring

pairwise relationships of local features, where generally only

one type of relationship such as co-occurrence or proximity

was modeled, using methods like the Markov process.

In contrast, our approach explicitly integrates the descriptors of

patch trajectories as well as their relative spatial location and

motion pattern. Both the identification of the reference points

and the generation of the final representation are very easy to

implement, and very competitive action recognition accuracy

can be achieved on several challenging benchmarks. Moreover,

we also show that the proposed motion representation can be

reduced to very low dimensions for efficient classification with

no performance degradation.

The rest of this paper is organized as follows. We first

briefly discuss related works in Section II, and then intro-

duce the tracking of local patches, which is the basis of

our representation, in Section III. Section IV elaborates the

proposed approach and Section V discusses an extensive set

of experiments and results. Finally, Section VI concludes

this paper.

II. RELATED WORKS

Human action recognition has been extensively studied in

the literature, where most efforts have been devoted to the

design of good feature representations. Local features, coupled

with the bag-of-features framework, are currently the most

popular way to represent videos [2], [5]. In addition to the bag-

of-features, several alternative feature coding methods have

been proposed, such as the Fisher Vectors [6], VLAD [7]

and the super vectors [8], some of which have also been

successfully used in human action recognition.

Recent works on video representation may be divided

into the following two categories. The first category

extracts or learns spatial-temporal local features, which are

spatial-temporal volumes typically capturing representative

regions like the boundary of a moving object. Many efforts

in this category focused on the design of good local

volume detectors/descriptors [1], [9]–[13] or feature learning

algorithms [14]–[16]. A few others focused on the selection or

sampling of more effective local volumes [17], [18] or higher-

level attribute representations [19], [20]. Instead of directly

using the spatial-temporal local features in the bag-of-features

representation, the other category performs temporal tracking

of local patches and then computes features on top of the local

patch trajectories [3], [21]–[26]. In the following we mainly

focus our discussion on the trajectory-based approaches, which

are more related to this work. Readers are referred to [27]–[29]

for comprehensive surveys of action recognition techniques,

particularly those focusing on the design of recognition

models.

In [21], Uemura et al. extracted trajectories of SIFT patches

with the KLT tracker [30]. Mean-Shift based frame segmen-

tation was used to estimate dominating plane in the scene,

which was used for motion compensation. Messing et al. [22]

computed velocity histories of the KLT-based trajectories for

action recognition. The work of [26] also adopted the KLT

tracker, and proposed representations to model inter-trajectory

proximity. They used a different set of trajectories and did

not specifically focus on alleviating the negative effect of

camera motion. Wang et al. [23] modeled the motion between

KLT-based keypoint trajectories, without considering trajec-

tory locations. Spatial and temporal context of trajectories

was explored in [25], where the authors adopted an elegant

probabilistic formulation and focused on modeling context, not

directly on alleviating the negative effect of camera motion.

Raptis and Soatto [24] and Gaidon et al. [31] proposed tracklet,

which emphasizes more on the local casual structures of action

elements (short trajectories), not the pairwise motion patterns.

In [32], the authors extended [24] to a mid-level representation

by grouping trajectories based on appearance and motion

information, leading to a set of discriminative action parts,

which are essentially identified by the found trajectory clusters.

The idea of grouping trajectories is similar to our method in

the identification of the global reference points, but the way

of using the trajectory clusters is totally different. Another

work by Kliper-Gross et al. [33] proposed a representation

called motion interchange pattern to capture local motions

at every frame and image location. The authors also pro-

posed a suppression mechanism to overcome camera motion,

which—as will be shown later—offers much lower recognition

accuracies than our approach. In addition, Wang et al. [34]

performed trajectory-based modeling using Bayesian models

and Wu et al. [35] proposed to use decomposed Lagrangian

particle trajectories for action recognition. Several other

authors also explored object-level trajectories [36], [37] for

video content recognition.

A representative approach of trajectory-based motion

modeling is from Wang et al. [3], [4], [38], who generated

trajectories based on dense local patches and showed that the

dense trajectories significantly outperform KLT tracking of

sparse local features (e.g., the SIFT patches). Very promising
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results have been observed on several human action

recognition benchmarks. They found that long trajectories are

often unstable and therefore adopt short trajectories that only

last 15 frames. To cope with camera motion, they extended

Dalal’s motion boundary histogram (MBH) [39] as a very

effective trajectory-level descriptor. MBH encodes the gradi-

ents of optical flow, which are helpful for canceling constant

camera motion, but cannot capture the pairwise motion rela-

tionships. Jain et al. [40] extended the work by considering

the compensation of dominant motion in both tracking and

encoding stages, which is different as Wang’s work only

used the MBH to consider the issue in the encoding stage.

A new descriptor called Divergence-Curl-Shear (DCS) was

also proposed based on differential motion scalar features. In a

recent work of Wang and Schmid [38], feature matching across

frames was adopted to estimate a homography that helps

cancel global motion, such that the effect of camera motion can

be alleviated. This method is similar to our global reference

point based method, which may fail when moving objects

like humans dominate the scene [38]. In addition, it cannot

explicitly capture the pairwise motion relationships between

objects, which can be achieved by our local reference point

based method. Furthermore, Jung et al. [41] also clustered

trajectories for feature modeling, but did not adopt the idea of

dense trajectories, which are more effective. Piriou et al. [42]

explored a method for computing the dominant global image

motion in the scene using probabilistic models.

Our representation integrates trajectory descriptors with the

pairwise trajectory locations as well as motion patterns. It not

only differs from the previous inter-trajectory descriptors in its

design, but also generates competitive recognition accuracies

compared to the state-of-the-art approaches on challenging

benchmarks of realistic videos. This work extends upon a

previous conference publication [43] by adding new

experiments on a large dataset, more comparative analysis

with alternative methods and baselines, and extra discussions

throughout the paper. In addition, we also discuss and evaluate

a solution to successfully reduce the dimensionality of the

proposed representation, which is very important particularly

when dealing with large datasets.

III. GENERATING DENSE TRAJECTORIES

The proposed representation is generated based on local

patch trajectories. In this paper, we adopt the dense trajectory

approach by Wang et al. [3], [4] as it has been shown effective

on several benchmarks. We briefly describe the idea of dense

trajectories as follows. Notice that our approach is not limited

to this specific trajectory generation method and can be applied

on top of any local patch trajectories.

The first step is to sample local patches densely from every

frame. We follow the original paper to sample patches in

8 spatial scales with a grid step size of 5 pixels. Tracking

is then performed on the densely sampled patches by median

filtering in a dense optical flow field. Specifically, a patch

Pt = (xt , yt ) at frame number t is tracked to another patch

Pt+1 in the following frame by

Pt+1 = (xt+1, yt+1) = (xt , yt ) + (F × ω)|(x̄t ,ȳt ), (1)

where F is the kernel of median filtering, ω = (ut , vt ) denotes

the optical flow field, and (x̄t , ȳt ) is the rounded position of Pt .

To compute the dense optical flow, the algorithm of [44] is

adopted, which is publicly available from the OpenCV library.

A maximum value of trajectory length is set here to avoid a

drifting problem that often occurs when trajectories are long,

and 15 frames were found to be a suitable choice. According to

the authors, this is considered as an effective strategy to make

sure the trajectories are mostly correct. To further improve

tracking accuracy, trajectories with sudden large displacements

are removed from the final set.

After the trajectories are generated, we can compute several

descriptors to encode either the trajectory shape or the local

motion and appearance within a space-time volume around the

trajectories. In [3], the shape of a trajectory is described in a

very straightforward way by concatenating a set of displace-

ment vectors �Pt = (Pt+1 − Pt ) = (xt+1 − xt , yt+1 − yt ).

In order to make the trajectory shape (TrajShape) descriptor

invariant to scale, the shape vector is further normalized by

the overall magnitude of motion displacements:

TrajShape =
(�Pt , . . . ,�Pt+L−1)∑t+L−1

i=t ‖�Pi‖
, (2)

where L = 15 is the length (frame number) of the trajectories.

Three descriptors are used to encode the local motion

and appearance around a trajectory: Histograms of Oriented

Gradients (HoG) [45], Histograms of Optical Flow (HOF),

and the MBH. HOG captures local appearance information,

while HOF and MBH encode local motion patterns. To get

a fine-grained description of local structures, the space-time

volumes (spatial size 32×32 pixels) around the trajectories

are divided into 12 equal-sized 3D grids (spatially 2×2 grids,

and temporally 3 segments). For HOG, gradient orientations

are quantized into 8 bins, which is a standard setting used

in the literature. HOF has 9 bins in total, with one addi-

tional zero bin compared to HOG. With these parameters

the final representation has 96 dimensions for HOG and

108 dimensions for HOF. As described earlier, MBH com-

putes a histogram based on the derivatives of optical flow.

Specifically, the derivatives are computed separately on both

horizontal and vertical components. Like HOG, 8 bins are used

to quantize orientations, and as there are two motion boundary

maps from the derivatives along two directions, the MBH

descriptors have 96×2 = 192 dimensions. By using the deriv-

atives of optical flow, MBH is able to cope with global motion

and only captures local relative motion of pixels. This is quite

useful for the analysis of realistic videos “in the wild” with

severe camera motion, but the pairwise motion relationships

are not captured in MBH. The parameters for computing the

descriptors are chosen based on an empirical study conducted

in [3]. All the three descriptors have been shown effective in

human action recognition studies, particularly on benchmarks

of unconstrained videos [2], [3], [5], [40], [46].

Notice that the method was recently augmented by

Wang and Schmid in [38]. The general flow of computing

the features remains the same, except that, as aforementioned

in Section II, global motion is estimated and trajectories deter-

mined to be on the background are excluded from computing
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the representations. In the experiments, we will show results

of our approach on both the original trajectories [3] and the

new improved trajectories [38].

IV. TRAJECTORY-BASED MOTION MODELING

In this section, we introduce the proposed trajectory-based

motion modeling approach. We first elaborate a method that

utilizes global reference points to alleviate the effect of camera

motion specifically for improving the TrajShape descriptor.

After that we describe a trajectory-based motion representation

that uses each individual trajectory as a local reference point.

This representation integrates the location and motion rela-

tionships of the local patch trajectories as well as their local

appearance descriptors. Because of the use of relative motion,

it is not sensitive to camera movements. Between the two ideas

using global and local reference points respectively, the latter

representation is considered as a more important contribution.

We elaborate both of them in the following.

A. Improved Shape Descriptor With Global Reference Points

Identifying the global motion in complex unconstrained

videos is not an easy task. Typical solutions include

foreground-background separation [21] and video stabiliza-

tion [47], etc. In this paper we present a very simple solution

by clustering the motion patterns of all the found trajectories

on the scene. The dominant pattern from the largest clusters

is treated as reference points to calibrate motion, so that the

effect of global/camera motion can be alleviated. Specifically,

given a trajectory T with start position Pt on frame t , the

overall motion displacement of the trajectory is

�T = (Pt+L−1 − Pt ) = (xt+L−1 − xt , yt+L−1 − yt ). (3)

Notice that, because the length of the dense trajectories has

been restricted to only 15 frames (0.5 seconds for a 30 fps

video), most trajectories are fairly straight lines with small

angle deviations from the overall motion direction. To verify

this, we compute the angles between the moving directions of

all the segments of each trajectory and the “overall” motion

direction (between the starting and ending points) of the

trajectory. Results are visualized in Figure 2. We see that

almost all the segments are within 90 degrees and more than

half of them are within 45 degrees, indicating that the “shape”

of the trajectories is mostly very straight. Because of this

observation, we do not need to further split a trajectory and

only adopt the overall displacement to represent its motion.

The motion pattern similarity of two trajectories is

computed by S(Tu ,Tv ) = ||�Tu − �Tv ||. With this

similarity measure, we cluster trajectories starting within each

5-frame temporal window of a video, and empirically produce

five trajectory clusters per window. Note that the TrajShape

descriptor also can be used to compute similarities and gen-

erate the trajectory clusters, but we have observed that the

2D displacement vectors show similar results at a much faster

speed.

It is difficult to predict which cluster contains trajectories

on the background scene and which one refers to a moving

object. For instance, if the foreground objects are small,

Fig. 2. Distribution of the angles between the motion directions of trajectory
segments and the overall trajectory motion direction. Outer circle shows
statistics of the Hollywood2 dataset and inner circle plots that of the Olympic
Sports dataset. This figure is best viewed in color. See texts for more
explanations.

then the largest cluster may refer to the background scene.

However when the foreground objects are very large and

occupy most area of a frame, trajectories from the largest

cluster may mostly come from the objects. This problem was

also found in the recent work of Wang and Schmid [38], who

used a more complex method of feature matching to identify

the global motion. In the experiments, we empirically choose

the top-three largest clusters (out of a total of five clusters)

and compute the mean motion displacement of each cluster as

a candidate dominant motion direction. We found that this is

more reliable than using a single cluster (see evaluations of

this choice in Section V-D). Figure 3 visualizes the trajectory

clustering results on two example frames, where the top-three

clusters are shown in different color. Note that, for some spe-

cial motions like camera zooming in or out, the induced image

motion is a divergence field, and the resulting trajectories are

straight segments but of any orientations. In this rare case

using more clusters might be helpful, but three was just found

to be a reliable number in general.

Given a trajectory cluster C, let the mean motion

displacement be �C = (�x̄c,�ȳc). The displacement of a

trajectory between two nearby frames within the correspond-

ing 5-frame window is adjusted to �P ′
t = �Pt − �C/15,

where �C/15 is the determined global motion. We then update

the displacement of all the trajectories in the next 5-frame

window and further proceed until the end of the video. With

this compensation by the estimated dominant motion, the

TrajShape descriptor in Equation (2) can be adjusted to:

TrajShape′ =
(�P ′

t , . . . ,�P ′
t+L−1)∑t+L−1

i=t ‖�P ′
i ‖

, (4)

where TrajShape′ is the improved descriptor. Using the mean

motion displacements of the three largest clusters, a trajectory

has a set of three TrajShape′ descriptors, each adjusted by the

motion pattern of one cluster. The method of converting sets
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Fig. 3. Visualization of trajectory clustering results. Trajectories from the top-three largest clusters are visualized in green, light red and yellow respectively,
while the remaining ones are shown in white. (a) Two people kissing; (b) Two people getting out of a car. This figure is best viewed in color.

of TrajShape′ to measure video similarity will be described

later.

It is worth further explaining that, if the cluster corresponds

to the background, the adjustment of �C/15 represents the

canceling of the camera motion. While when the cluster

corresponds to a large moving object such as a human subject

dominating the scene, the adjustment can be explained as

estimating the relative motion of all the other components

to the subject, which can also alleviate the effect of camera

motion, simply because of the use of relative motion. In this

case, as the reference point (i.e., the mean motion of the

cluster) corresponds to a large area of the scene, it can still be

considered as a global reference point, in contrast to the local

reference points discussed in the following.

B. Motion Modeling With Local Reference Points

The global reference points can be used to alleviate the

effect of camera motion. However, the resulted representation

can hardly capture the motion relationships between moving

objects, which motivates the proposal of local reference points

in this subsection, which is considered as the main contribution

of this work.

We start from discussing the quantization of the appearance

descriptors, and will elaborate the use of local reference

points afterwards. Since the number of trajectories varies

across different videos, a common way to generate fixed-

dimensional video representation is to use the well-known

visual codewords, which are cluster centers of the trajectory

descriptors. This is the same with the classical bag-of-features

framework based on static SIFT descriptors [48]. In our

representation, we also use visual codewords as the abstract

units to encode the pairwise motion relationships. For each

type of trajectory descriptor (e.g., HOF), a codebook of

n codewords is generated by clustering the descriptors using

k-means.

We use every trajectory as a local reference point to

characterize relative motion, so that camera motion may be

canceled and the motion relationships between objects can be

encoded. Specifically, given two trajectories Tu and Tv , the

relative motion (with Tv as the local reference point) can be

computed by

M(Tu,Tv ) = �Tu − �Tv , (5)

where �T can be computed by Equation 3. Note that for

most cases it is not needed to use the dominant motion �C

to further cancel global motion here, since the relative motion

is already robust to camera movement. However, for some

special types of camera movements like zoom in or out,

or when the objects are with different depth in the scene,

computing relative motion in the above form is not sufficient

to fully cancel camera motion, and therefore using the global

reference points is still helpful. We will show in the experi-

ments that the improved trajectory shape descriptor TrajShape′

is complementary to this pairwise motion representation and

can be combined to achieve higher recognition accuracies.

Figure 4 visualizes the generation of the motion feature

representation with local reference points, named as TrajMF.

The relative motion M(Tu,Tv ) of two trajectories is quantized

in a way that incorporates very rich information, including

trajectory neighborhood appearance descriptors, motion direc-

tion and magnitude, as well as the relative location of the

two trajectories. The neighborhood appearance information is

encoded in TrajMF because this representation is constructed

based on the trajectory codewords, which are generated using

the appearance descriptors like HOG. In the final representa-

tion as shown in the middle of Figure 4, we only consider

the overall relative motion between codeword pairs, so that

the dimension of TrajMF is fixed. All the pairwise trajectory

motion patterns are mapped/accumulated to their correspond-

ing codeword pairs. In other words, given a pair of trajec-

tories, we first find their corresponding codeword pair, and

then add the quantized motion vector (explained in the next

paragraph) to that particular entry. Because a visual codeword

may represent a (moving) local pattern of an object or a

part of the background scene, the final TrajMF representation

implicitly encodes object-object or object-background motion

relationships.

The motion pattern between two trajectories is quantized

into a compact vector, according to both the relative motion

direction and the relative location of the trajectory pair.

Formally speaking, let Q(·) be the quantization function
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Fig. 4. An illustration of the trajectory-based motion feature representation, named as TrajMF. The motion of two trajectories in (a) is converted to relative
motion (Tu relative to Tv in this example) in (b), which is then mapped to an entry of a codeword-based matrix representation (c), by quantizing the local
descriptors of the two trajectories. The motion pattern between each codeword pair, i.e., an entry in (c), is described by a 16-d vector, based on the relative
motion direction and relative location of all the trajectory pairs falling into that entry. The quantization maps for generating the 16-d vector are shown in (d).
The resulted representation is a vector that concatenates all the values in (c), which is in very high dimension but can be mapped into a compact space using
dimension reduction techniques. See texts for more explanations.

according to motion direction and relative location (see the

quantization maps in Figure 4(c)), which outputs a quantiza-

tion vector with all zeros except the bit that an input trajectory

pair should be assigned to. The motion vector of a codeword

pair (wp, wq ) is then defined as the summation of the motion

vectors of all the trajectory pairs that fall into the codeword

pair:

f(wp, wq )

=
∑

∀(Tu ,Tv )→(wp,wq )

Q(M(Tu ,Tv ),L(Tu,Tv )) · ||M(Tu,Tv )||,

(6)

where “→” denotes the trajectory-to-codeword mapping,

||M(Tu,Tv )|| is the magnitude of the relative motion, and

L(Tu ,Tv ) = (P̄Tu
− P̄Tv

) = (x̄Tu
− x̄Tv

, ȳTu
− ȳTv

)

indicates the relative location of the mean positions of two

trajectories. In the experiments we use four bins to quantize

both the motion direction and the relative location direction,

and therefore f is 16-d. Evaluations of these parameters can

be found in a later Section V. Concatenating f of all the

codeword pairs, the final TrajMF representation has n×n
2

×

4 × 4 dimensions (n is the number of codewords), which

is obviously very high. We discuss techniques to reduce the

dimensions of TrajMF in the following subsection.

C. Dimension Reduction of TrajMF

The goal of dimension reduction is to improve the efficiency

of recognition and reduce the usage of memory. We experi-

mented with several dimension reduction methods to reduce

the dimension of TrajMF. The first method came into our mind

was to use data mining techniques [49], [50] for feature selec-

tion, which choose a subset of the entries in the TrajMF based

on an estimation of discriminativeness in recognition. Another

work we considered is [51], where the authors proposed

product quantization to map high-dimensional inputs into low

compact spaces. However, as will be shown in the experiments,

our results indicate that both options are ineffective and the

performance is always degraded.

We therefore decided to reduce the feature dimension with

the simple principal components analysis (PCA). Naive PCA

cannot be deployed in our case due to the high computational

needs arised from the high dimensionality of the original

features. We therefore adopt the EM-PCA approach proposed

by Roweis [52], which was designed to be suitable for

high dimensional data and large collections. We briefly

introduce it below.

Consider a linear model that assumes an observed data

sample y ∈ Rp is generated by

y = C x + v, (7)

where the k-dimensional latent variables x ∈ Rk follow the

unit normal distribution with zero mean (p ≥ k). C ∈ Rp×k

is the transformation matrix, and v is the noise vector.

We can view PCA as a limiting case when the noise

covariance becomes infinitely small. So the model can be

rewritten as Y = C X where Y is a matrix of the observed data

and X is a matrix of the latent variables. The first k principal

components can then be learned through the following

EM algorithm [52]:

e − step : X = (CT C)−1CT Y

m − step : Cnew = Y XT (X XT )−1

It is an iterative process and the required storage space is

O(kp) + O(k2), which is much smaller than the naive PCA

solution.

D. Classification

The proposed representations can be used to convert videos

to feature vectors, which are then used for action model learn-

ing and prediction. In this subsection we briefly discuss classi-

fier choices for both the augmented trajectory shape descriptor

and the TrajMF representation. For TrajShape′, we adopt the

standard bag-of-features approach to convert a set of descrip-

tors into a fixed-dimensional vector. Following [2] and [3],

we construct a codebook of 4,000 codewords using k-means.

All the three TrajShape′ descriptors of every trajectory

are quantized together into a single 4,000-d histogram for
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Fig. 5. Example frames of a few action classes in Hollywood2 (first row), Olympic Sports (second row), HMDB51 (third row) and UCF101 (bottom row)
datasets. Videos in all the datasets were mostly captured under unconstrained environments with camera motion.

each video, which is used as the final representation. This

is classified by the popular χ2 kernel Support Vector

Machines (SVM) due to its consistently good performance on

histogram-like representations.

The TrajMF can be computed on top of any basic trajectory

descriptors. We adopt all the three descriptors used in [3]:

HOG, HOF, and MBH. For each type of trajectory descriptor, a

separate TrajMF representation is computed. We evaluate both

the original TrajMF and its dimension reduced version. As the

dimension of the original TrajMF is very high, non-linear

classifiers such as the χ2 SVM are unsuitable due to speed

limitation, and thus more efficient alternatives like the linear

SVM are preferred. We will evaluate these popular kernel

options in the experiments.

V. EXPERIMENTS

A. Datasets and Evaluation

We conduct extensive experiments using four challenging

datasets of realistic videos: Hollywood2 dataset [53], Stanford

Olympic Sports dataset [54], HMDB51 dataset [47], and

UCF101 dataset [55]. Many videos in these datasets contain

camera motion and their contents are very diverse. Figure 5

gives some example frames from each of the datasets.

The first dataset is the widely adopted Hollywood2 [53],

which contains 1,707 video clips collected from 69 Hollywood

movies. The dataset is divided into a training set of 823 sam-

ples and a test set of 884 samples. 12 action classes are

defined and annotated in this dataset, including answering

phone, driving car, eating, fighting, getting out of car, hand

shaking, hugging, kissing, running, sitting down, sitting up,

and standing up. Each class is learned by a one-versus-all SVM

classifier. Recognition performance is measured by average

precision (AP) for a single class and mean AP (mAP) for the

overall performance of all the classes.

The Olympic Sports dataset [54] has 783 clips and 16 action

classes. So on average there are around 50 clips per class.

The classes are high jump, long jump, triple jump, pole vault,

gymnastics vault, shot put, snatch, clean jerk, javelin throw,

hammer throw, discus throw, diving platform, diving spring-

board, basketball layup, bowling, and tennis serve. We adopt

the provided train/test split by Niebles et al. [54], and use

one-versus-all SVM for classification. Like Hollywood2,

mAP is used as the performance measure.

The HMDB51 dataset was recently collected by

Kuehne et al. [47], containing 6,766 video clips in total. There

are 51 action classes, each with at least 101 positive samples.

The action names can be found in Figure 6. We adopt the

official setting of [47] to use three train/test splits and also

the one-versus-all classifiers. Each split has 70 training and

30 test clips for each action class. Also following [47],

we report mean classification accuracy over the three splits.

The last dataset is the UCF101 [55], which was collected

by Soomro et al. and is currently the largest publicly available

dataset for action recognition. The dataset has 101 action

classes and 13320 video clips in total. Each category is

grouped into 25 groups, with each group containing

4-7 videos. We adopt one-versus-all SVMs and the leave-

one-group-out strategy, i.e., each time 24 groups are used for

training and 1 for testing. We report the mean classification

accuracy over the 25 train/test splits.

B. Results and Discussion

First, we report the performance of the proposed

representations. We set the number of codewords n to 300,

and use 4 bins to quantize both the motion direction and
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Fig. 6. Confusion matrices of the fusion results (“All combined”) on the Hollywood2 (upper right), Olympic Sports (lower right) and HMDB51 (left) datasets.

TABLE I

PERFORMANCE OF BASELINES, OUR REPRESENTATIONS, AND THEIR COMBINED FUSION ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND

UCF101 DATASETS, USING THE ORIGINAL DENSE TRAJECTORIES [3]. THE “4 COMBINED” BASELINE RESULTS (USING FOUR FEATURES

TRAJSHAPE, HOG, HOF AND MBH) ARE COMPUTED BASED ON THE STANDARD BAG-OF-FEATURES. “OUR 4 COMBINED” INDICATES

THE FUSION RESULTS OF THE TRAJSHAPE
′

AND THE THREE TRAJMF REPRESENTATIONS. “ALL COMBINED” INDICATES RESULTS

FROM THE FUSION OF OUR REPRESENTATIONS AND THE BASELINE. NOTE THAT BETTER RESULTS ARE REPORTED

THAN THE CONFERENCE VERSION [43] ON HMDB51 BECAUSE ONE-VS.-ALL SVM (NOT MULTI-CLASS SVM) IS

ADOPTED FOLLOWING THE LITERATURES USING THIS BENCHMARK. FUSION IS DONE BY

SIMPLY AVERAGING THE PREDICTIONS OF SEPARATE CLASSIFIERS

the relative location, as depicted in Figure 4. The linear

kernel SVM is adopted to classify the three original TrajMF

representations before dimension reduction (each based on a

different trajectory descriptor) and the χ2 kernel SVM is used

for the other representations. Later on we will evaluate the

dimension reduced TrajMF, kernel choices, and also several

key parameters.

Table I gives the results on the four datasets, using the

original dense trajectory features [3]. In addition to discussing

our proposed representations, we also present the results of the

bag-of-features baselines using the same set of dense trajectory

descriptors. Following the work of Wang et al. [3], in the

bag-of-features representation, we use a codebook of

4000 words for each type of the trajectory descriptor. We use

the source codes released by the authors to generate the

dense trajectories and compute the basic descriptors, while the

bag-of-features representation is based on our own implemen-

tation. As shown in the table, the amended trajectory shape

descriptor TrajShape′ outperforms the original TrajShape,

which validates the effectiveness of using the simple
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TABLE II

PERFORMANCE OF BASELINES, OUR REPRESENTATIONS, AND THEIR COMBINED FUSION ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND

UCF101 DATASETS, USING THE IMPROVED DENSE TRAJECTORIES [38]. THE “4 COMBINED” BASELINE RESULTS ARE COMPUTED

BASED ON THE FISHER VECTOR CODING. “OUR 4 COMBINED” INDICATES THE FUSION RESULTS OF THE TRAJSHAPE′ AND

THE THREE TRAJMF REPRESENTATIONS. “ALL COMBINED” INDICATES RESULTS FROM THE FUSION OF OUR

REPRESENTATIONS AND THE BASELINE. FUSION IS DONE BY SIMPLY AVERAGING

THE PREDICTIONS OF SEPARATE CLASSIFIERS

TABLE III

PERFORMANCE OF THE DIMENSION REDUCED FEATURES ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND UCF101 DATASETS, USING BOTH THE

ORIGINAL AND THE IMPROVED DENSE TRAJECTORIES. OVERALL THE RESULTS ARE VERY CLOSE TO THAT OF THE HIGH DIMENSIONAL FEATURES

clustering-based method to cancel global motion. On the

large UCF101 dataset, the performance is boosted from

57.1% to 59.0%, which is very encouraging considering

simplicity of our method and the complexity of the dataset.

In contrast, recently Jain et al. [40] proposed ω-Trajdesc

descriptor based on a different motion compensation method

and achieved 51.4% on Hollywood2 and 32.9% on HMDB51,

which are slightly higher to ours.

For the TrajMF representation, we also observe very promis-

ing performance. Combining our TrajShape′ and TrajMF rep-

resentations (“Our 4 combined”) generates better results than

the “4 combined” baseline of [3] on the Olympic Sports and

UCF101 datasets. On Hollywood2 and HMDB51 the perfor-

mance is similar or slightly lower than the bag-of-features

baseline. We underline that the TrajMF representation is not

a direct replacement of the baseline bag-of-features. In fact

they are complementary because they emphasize on different

aspects of the visual contents. More specifically, TrajMF

encodes in particular the motion relationship information and

the bag-of-features captures visual appearances. As shown

in the table, further combining our representations with the

baseline (“All combined”) gives substantial improvements on

all the four datasets. This confirms the fact that the TrajMF

representations are very complementary to the standard

bag-of-features, and should be used together for improved

action recognition performance. Note that in Table I, the

results on HMDB51 are based on one-vs.-all SVMs following

existing works, which are found to be better than that reported

in the previous conference paper [43], where multi-class SVMs

were used. This is probably due to the fact that popular multi-

class SVMs use a top-down hierarchical classification scheme,

which is less optimal compared with the binary one-vs.-all

SVMs that train an optimal separation plane solely for each

class.

We also evaluate our approach on the improved dense

trajectories [38]. Results are summarized in Table II. The

improved version uses feature matching to estimate camera

motion, so that the effect from global camera movement can

be alleviated. This is similar to our goal of using the motion

reference points, but our TrajMF has an additional capability

of modeling the motion relationships as discussed earlier.

As shown in the table, it is interesting to observe that the

TrajShape′ still outperforms the baseline with clear margin.

This is probably because we use three global reference points

instead of one as [38], which also confirms the fact that global

camera motion is very difficult to be estimated accurately. The

combination of our TrajMF representations with the baseline

offers similar performance gains to that on the original dense

trajectories, leading to very competitive results on all the four

evaluated datasets (row “All combined”). This again verifies

the effectiveness of our proposed representations. Note that

in this experiment, the well-known Fisher vector coding is

adopted for the baseline, which is significantly better than the

bag-of-features [38].

Next we evaluate the performance of the dimension reduced

TrajMF using EM-PCA. For the Hollywood2, HMDB51 and

UCF101, the dimensionality is reduced to 1,500, while for the

Olympic Sports, we use 500 because there are only 783 videos

in this dataset. We will evaluate the effect of dimensionality

later. Linear kernel SVM is also adopted in this experiment.

Table III summarizes the results. Compared with the results

in Table I and Table II, we can see that the performance

remains almost the same after dimension reduction. For the

“4 combined” results, we even observe better performance in

several cases, which is probably because the PCA process

is able to remove noises from the original features. These

results confirm that EM-PCA is suitable for compressing the

TrajMF features. Although very simple, we consider this as an
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TABLE IV

PERFORMANCE OF SEVERAL KERNEL OPTIONS FOR THE TRAJMF REPRESENTATION, USING THE ORIGINAL DENSE TRAJECTORIES. “OUR

4 COMBINED” DENOTES THE COMBINATION OF THE 4 REPRESENTATIONS DERIVED FROM USING THE MOTION REFERENCE POINTS,

AND “ALL COMBINED” IS THE COMBINATION OF OUR 4 REPRESENTATIONS AND THE BASELINE BAG-OF-FEATURES

TABLE V

PERFORMANCE OF VARIOUS DIMENSION REDUCTION METHODS ON HOLLYWOOD2, OLYMPIC SPORTS, HMDB51 AND UCF101 DATASETS. FOR BOTH

MUTUAL INFORMATION AND PRODUCT QUANTIZATION, THE TRAJMF FEATURES ARE REDUCED TO 2,000 DIMENSIONS

important ingredient of the approach as the original TrajMF

features are in high dimensions which may prevent its use

in some applications. Figure 6 further shows the confusion

matrices of the fusion results on Hollywood2, Olympic Sports

and HMDB51. Errors mostly occur between classes that are

visually similar, like “drink” and “eat” in HMDB51, and

“HugPerson” and “Kiss” in Hollywood2.

We also report the performance of several popular classifier

kernels, in order to identify the most suitable kernel for the

proposed TrajMF representation. We only discuss results on

the original dense trajectories in this experiment, as the obser-

vations from the improved trajectories are mostly the same.

Specifically, we evaluate χ2, HI (Histogram Intersection) and

Linear kernel SVMs for the original TrajMF representations,

and the χ2 kernel is replaced by RBF kernel for the dimension

reduced TrajMF representation that has negative values, on

which the χ2 kernel is not applicable. The HI kernel is

also dropped for the dimension reduced TrajMF since it is

no longer a histogram. Instead of reporting the performance

of each single TrajMF classified by different kernels, we

report the fusion performance due to space limitation. Fusion

performance is also more important as we care more on the

best possible results that can be attained on these challenging

datasets. Table IV shows the results. Across all the fusion

results, we use fixed kernel options for the baseline bag-of-

features representation and the trajectory shape descriptors,

and deploy different kernels on the TrajMF. We see that

the performance of these kernels does not differ significantly

under all the settings. More interestingly, the linear kernel

is observed to be very robust for both the original and the

dimension reduced TrajMF representations, offering similar or

better results than the nonlinear kernels on all the datasets.

This is very appealing as the linear kernel is much more

efficient.

C. Comparative Studies

In this subsection, we first compare our results with alter-

native solutions for dimension reduction and for alleviating

the effect of camera motion, followed by a comparison with

recent state-of-the-art results.

We first compare results of a few dimension reduction

methods. For this, we consider two alternative methods as

discussed in Section IV-C. One is using mutual information

to select a subset of discriminative dimensions, and the other

method is Product Quantization [51], which decomposes the

input space into a Cartesian product of low dimensional

subspaces that can be quantized separately, where the num-

ber of the subspaces is equal to the number of the target

dimensions. In our implementation, we use 8 binary values

to quantize each subspace which is converted to an integer

between 0 and 255 in the dimension-reduced representation.

We fix the final dimension of both methods to 2,000, which

is higher than 1,500 from the EM-PCA as we found 2,000 is

a better number for both the compared methods.

Results are summarized in Table V, where we show both

our results of “Our 4 combined” and the “All combined”

which further includes fusion with the Fisher Vector baseline

on the improved trajectories. We see that for all the datasets

EM-PCA is clearly better. This is probably because PCA can

preserve most valuable information from the original feature,

while Mutual Information incurs significant information loss

by selecting only a small fraction of the dimensions. Product

Quantization is better than Mutual Information but its way

of quantizing the features into binary vectors also loses
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TABLE VI

SPEED AND MEMORY COST BEFORE AND AFTER DIMENSION

REDUCTION, ON THE HOLLYWOOD2 DATASET USING THE

TRAJMF-HOG FEATURE. DIMENSION REDUCTION HELPS

REDUCE BOTH COST SIGNIFICANTLY. THE TRAINING

PROCESS OF THE EM-PCA COSTS 885S, AND

REDUCING THE DIMENSION OF ONE FEATURE

ONLY REQUIRES 0.035S. SPEED IS MEASURED

AS THE SINGLE THREAD RUNNING TIME ON

A REGULAR MACHINE WITH INTEL CORE i7

4770 3.4GHz CPU AND 32 GB RAM

TABLE VII

COMPARISON WITH A VIDEO STABILIZATION-BASED APPROACH, USING

THE HOLLYWOOD2 DATASET AND THE ORIGINAL DENSE TRAJECTORIES.

OUR APPROACH GENERATES SIMILAR PERFORMANCE TO THE

DENSE TRAJECTORY BASELINE ON STABILIZED VIDEOS,

BUT IS MORE EFFICIENT

more information. Table VI further compares the speed and

memory cost before and after using dimension reduction,

where we can clearly see the advantages of reducing the

feature dimensions.

To alleviate the effect of camera motion, we consider

an expensive yet very powerful stabilization-based method.

We experiment with the HMDB51 dataset, which has a stabi-

lized version obtained by applying a standard image stitching

method [47], [56], where camera motion is basically fully

canceled. We re-run the dense trajectory baseline on the sta-

bilized HMDB51 dataset. The results are shown in Table VII.

We see that our method gives very close performance to

the new baseline on stabilized videos, which are extremely

expensive to be generated using the method of [56]. This is

very encouraging and clearly proves the effectiveness of our

method in dealing with camera motion.

In Table VIII, we further compare our results with several

state-of-the-art approaches. On Hollywood2, we obtain 2.4%

gain over [38] (w/o Human Detection, HD), which used Fisher

vectors on the improved dense trajectories. This performance

gain is nontrivial considering that our result is based on the

same set of trajectories and [38] already has a function of

canceling global motion based on homography estimation.

In other words, the only added information comes through

the modeling of relative motion relationships in the TrajMF

representation. Compared to [38] using human detection

(i.e., w/HD) to compensate camera motion, our result is still

1.1% higher, which is very encouraging as the HD process is

very expensive. Compared with a recent hierarchical spatio-

temporal feature learning approach [15], a significant gain of

12.1% is achieved. The approach of Jain et al. [40] considered

motion compensation in both tracking and feature encoding

stages, which is very interesting. A very high-dimensional

descriptor called VLAD was included in their best result,

where more features were also used. However, it is still around

3% lower than ours.

On Olympic Sports, we attain better results than most

of the compared approaches, including an attribute-based

action learning method [19], a graph-based action modeling

approach [61], a new sparse coding-based representation [62],

a method modeling the dynamics of action attributes over

time [64], the approach of Jain et al. [40], and a mid-level

representation called motion atom and phrase [65]. Compared

with [38], we achieve better result than the without HD

approach and similar performance to the HD based approach.

Our best performance on HMDB51 is much higher than the

baseline result reported [47], where a biologically inspired

system of Serre et al. [68] was used. Our approach is also much

better than recent approaches like the Action Bank [20], the

Motion Interchange Pattern [33], and the new sparse coding-

based representation [62]. Compared with a recent work on

the sampling of local features [18], a new VLAD encoding

approach [60], and the approach of Jain et al. [40], we also

achieve better performance. For the approach of

Narayan and Ramakrishnan [66], the authors used the

Granger causality to model the temporal cause and effect

relationships of dense trajectories for action recognition. The

result of 58.7% reported in the table is from the fusion of

their causality descriptor and the improved dense trajectory

baseline. Compared with [38], like the observations on the

Olympic Sports, we obtain better performance than the

without HD approach and similar result to that of the HD

based approach. In addition, a recent work by Peng et al. [67]

used a new Fisher vector encoding method and achieved

very strong results. As their method focuses on a very

different aspect of the problem, our method is expected to be

complementary.

Since the UCF101 is relatively a new benchmark, there are

not many published results. The original baseline [55] is based

on the simple and standard HOG/HOF descriptors, which is

much worse than our approach. Compared with recent works

on fusing multiple super vectors [58] and improved VLAD

encoding [60], we also achieve better result with clear margins.

Our result is also better than the without HD performance of

Wang and Schmid [38], which was reported in the THUMOS

action recognition challenge as the best result [57]. This

again verifies the effectiveness of our approach by explicitly

modeling the motion relationships, even when the global

motion calibration was already used in the improved dense

trajectory baseline [38]. Notice that the baseline result of [55]

was produced by a multi-class SVM, which we found is

generally around 10% lower than using multiple one-vs-all

SVMs. All the other results reported in the table are based on

the latter.

D. Evaluation of Parameters

In this subsection, we evaluate a few important parameters

including the number of clusters in TrajShape′, and the size

of the visual codebook, the number of quantization bins
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TABLE VIII

COMPARISON WITH THE STATE-OF-THE-ART METHODS. OUR RESULTS ARE GIVEN IN THE BOTTOM ROW. THE PERFORMANCE OF LAPTEV et al.

ON THE OLYMPIC SPORTS DATASET IS OBTAINED FROM [54], AND THE PERFORMANCE OF WANG AND SCHMID [38] ON THE UCF101

IS REPORTED IN THE THUMOS ACTION RECOGNITION CHALLENGE 2013 [57]

Fig. 7. Performance of TrajShape′ on Hollywood2 (a) and Olympic Sports
(b) using different total numbers of clusters and different numbers of selected

clusters for motion compensation.

(for both motion direction and relative location) and the

number of dimensions used in the dimension reduced TrajMF.

Results of the TrajMF representations are based on the original

dense trajectories, which are overall a bit lower than that of the

improved trajectories. For most experiments, we report perfor-

mance on both Hollywood2 and Olympic Sports datasets. For

the number of dimensions of TrajMF, we use Hollywood2 and

UCF101, as Olympic Sports has too few videos to evaluate a

wide range of feature dimensions.

1) Number of Clusters: We first evaluate the performance

of TrajShape′ on Hollywood2 and Olympic Sports datasets,

using different numbers of clusters and different numbers of

selected clusters for motion compensation. Results are shown

in Figure 7, where we see that it is consistently good to group

all the trajectories into five clusters and then use the top-three

largest clusters as references to adjust the trajectories. Using

more clusters may bring noise into the representation as the

“small” clusters are not always meaningful, and thus the results

of selecting four clusters are generally worse than that of three.

2) Number of Codewords: Figure 8(a) shows the results

w.r.t. visual codebook size. We use 4 quantization bins for

Fig. 8. Evaluation of TrajMF parameters on Hollywood2 and Olympic
Sports datasets, using only the TrajMF-HOG feature. (a) Codebook size.
(b) Number of motion direction quantization bins. (c) Number of relative
location quantization bins.

both motion direction and relative location. We see that the

performance on both datasets is fairly stable over various

codebook sizes. Using a codebook of 600 codewords, we

obtain 41.2% on Hollywood2 and 68.9% on Olympic Sports.

Since the dimension of TrajMF is quadratic to the number of

codewords, the minor gain over smaller codebooks does not

justify the use of a much higher dimensional representation.

Even using dimension reduction, if the original dimension is
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Fig. 9. Evaluation of TrajMF dimensionality on Hollywood2 and UCF101
datasets. (a) TrajMF-HOG feature only. (b) Combination of multiple features.

too high, the reduction process requires more computational

workload. Therefore we conclude that a codebook of

200-300 codewords is preferred for TrajMF.

3) Number of Quantization Bins: Figure 8(b) and 8(c) plot

the results w.r.t. the number of quantization bins, respectively

for motion direction and relative location. We use

300 codewords and fix the number of relative location

quantization bins at 4 for (b) and motion direction quantization

bins at 2 for (c). 4 bins are consistently better than 2 bins

on both datasets. Further using more bins can improve the

results slightly.

4) Number of Dimensions: In Figure 9 we further show the

results of different dimensionality ranging from 100 to 1500,

on the Hollywood2 and UCF101 datasets. We show results of

both individual feature (TrajMF-HOG) and the combination of

multiple features. We see that the performance of the single

feature drops with less dimensions. However, for the fusion

result, there is no performance degradation at all when the

reduced dimension is as low as 500. These results confirmed

that dimension reduction can be reliably used on TrajMF with

no performance drop.

VI. CONCLUSION

We have introduced an approach for human action

recognition in unconstrained videos, where extensive cam-

era motion exists, which affects the performance of many

existing features. Our proposed solution explicitly models

motion information in videos. Two kinds of motion reference

points are considered to alleviate the effect of camera move-

ment and also take object relationships into account in action

representation. The object relationships are encoded by the

relative motion patterns among pairwise trajectory codewords,

so that accurate object boundary detection or foreground-

background separation is avoided. Extensive experiments on

four challenging action recognition benchmarks (Hollywood2,

Olympic Sports, HMDB51 and UCF101) have shown that the

proposed approach offers very competitive results. This single

approach already outperforms several state-of-the-art methods.

We also observed that it is very complementary to the standard

bag-of-features and Fisher vectors. In addition, we have shown

that the dimension of our proposed TrajMF can be reduced

by simple EM-PCA with no performance degradation.

Overall, we believe that approaches explicitly modeling

motion information are needed in a robust human action recog-

nition system, particularly when dealing with unconstrained

videos such as those on the Internet. One promising future

work is to further explore higher order relationships instead

of just pairwise motion patterns, which may be very helpful

for recognizing highly complex actions.
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